Shade Selection of Indigofera zollingeriana Miq Putative Mutant: Evaluation of Plant Growth, Biomass Production, Nutrient Contents, and In Vitro Digestibility

J. I. Royani, L. Abdullah, Sudarsono, S. I. Aisyah, D. Hardianto, P. S. Negoro, R. D. Purba, B. S. Azahra

Abstract

The use of gamma rays to improve Indigofera zollingeriana is beneficial for developing new superior varieties with genetic characteristics inheritable by other generations. During the development, selecting genotypes from I. zollingeriana putative mutant under shaded conditions can create stable shade-tolerant varieties, with the potential to be developed into new cultivars. Therefore, this study aimed to explore the selection of I. zollingeriana putative mutant in the M2 generation for assessing and evaluating plant growth performance, biomass production, as well as nutrient content and digestibility under shading. Seedlings of 10 I. zollingeriana putative mutants along with 2 control plants, were subjected to 5 levels of shade, namely 0%, 55%, 65%, 75%, and 85%, to identify genotypes with shade tolerance. The results showed that shading significantly (p<0.05) increased plant height, chlorophyll content, leaf length, and leaf width, but decreased the number of leaves, nodes, stem diameter, and branches, also leading to decreased biomass production, high nutritional content, and improved digestibility values. Genotypes R4.10 and R5.10 showed enhanced plant growth, stable biomass production, and increased nutritional content, with low digestible neutral detergent fiber (dNDF), and higher in vitro true digestibility (IVTD) values compared to control under shaded and unshaded conditions. The identified superior genotypes are promising for breeding programs and practical application in agroforestry or silvopasture systems.

References

Abdullah, L., & Suharlina. (2010). Herbage yield and quality of two vegetative parts of indigofera at different times of first regrowth defoliation. Media Peternakan, 33(1), 44–49. https://doi.org/10.5398/medpet.2010.33.3.169

Abdullah, L. (2010). Herbage production and quality of shrub indigofera treated by different concentration of foliar fertilizer. Media Peternakan, 33(3), 169–175. https://doi.org/10.5398/medpet.2010.33.3.169

An, J., Wei, X., & Huo, H. (2022). Transcriptome analysis reveals the accelerated expression of genes related to photosynthesis and chlorophyll biosynthesis contribution to shade-tolerant in Phoebe bournei. BMC Plant Biology, 22(1), 1–14. https://doi.org/10.1186/s12870-022-03657-y

Angadi, S. V., Umesh, M. R., Begna, S., & Gowda, P. (2022). Light interception, agronomic performance,and nutritive quality of annual forage legumes as affected by shade. Field Crops Research, 275(108358), 1-10. https://doi.org/10.1016/j.fcr.2021.108358

ANKOM Technology. (2015). In vitro true digestibility using the DAISY II incubator ANKOM Technology - 08/05. ANKOM Technology Method, 3, 1-2. https://www.ankom.com/sites/default/files/2024-08/Method_3_InVitro_D200_D200I.pdf?srsltid=AfmBOoqDADJPUo7Rbl0SLrWx8logfCU-LH8cJNNDtYubLlASNpW7K2ki

Horwitz, W., & Latimer, G. W. (2005). Official Methods of analysis of AOAC International (18th ed.). AOAC International.

Azevêdo, J. A. G., de Campos Valadares Filho, S., Detmann, E., dos Santos Pina, D., Paulino, M. F., Valadares, R. F. D., Pereira, L. G. R., & Lima, J. C. M. (2012). In situ and in vitro degradation kinetics and prediction of the digestible neutral detergent fiber of agricultural and agro-industrial byproducts. Revista Brasileira de Zootecnia, 41(8), 1890–1898. https://doi.org/10.1590/S1516-35982012000800013

Barela, A., Jain, S., Tiwari, S., Rahangdale, S., & Singh, P. (2022). Impact of gamma radiations on seed germination and morphological characteristics of pea (Pisum sativum L.). The Pharma Innovation Journal, 11(8), 464-467.

Caplin, N., & Willey, N. (2018). Ionizing radiation, higher plants, and radioprotection: from acute high doses to chronic low doses. Frontiers in Plant Science, 9(847), 1–20. https://doi.org/10.3389/fpls.2018.00847

Deepthi, C., & Thomas, U. C. (2023). Effect of shade levels on growth and yield attributes of promising varieties of Napier bajra hybrid. Forage Research, 49(3), 315–318. https://forageresearch.in/wp-content/uploads/2024/04/315-318-Deepthi-C.pdf

Di Pane, F. J., Lopez, S. C., Cantamutto, M. Á., Domenech, M. B., & Castro-Franco, M. (2018). Effect of different gamma radiation doses on the germination and seedling growth of wheat and triticale cultivars. Australian Journal of Crop Science, 12(12), 1921–1926. https://doi.org/10.21475/ajcs.18.12.12.p1251

Elango, T., Jeyaraj, A., Dayalan, H., Arul, S., Govindasamy, R., Prathap, K., & Li, X. (2023). Influence of shading intensity on chlorophyll, carotenoid and metabolites biosynthesis to improve the quality of green tea: A review. Energy Nexus, 12(100241), 1-9. https://doi.org/10.1016/j.nexus.2023.100241

Elsherbiny, H. A., Gaballah, M. M., Hamad, H. S., Sakr, S. M., Elbadawy, O. A., Alwutayd, K. M., Boudiar, R., Mansour, E., & Bleih, E. M. (2024). Inducing potential mutants in rice using different doses of gamma rays for improving agronomic traits. Chilean Journal of Agricultural Research, 84(3), 380–390. https://doi.org/10.4067/S0718-58392024000300380

Ernawati, A., Abdullah, L., Permana, I. G., & Karti, P. D. M. H. (2023). Forage production and nutrient content of different elephant grass varieties cultivated with Indigofera zollingeriana in an intercropping system. Tropical Animal Science Journal, 46(3), 321–329. https://doi.org/10.5398/tasj.2023.46.3.321

Eun, C. H., Ko, J. G., & Kim, I. J. (2024). Characterization of a new citrus mutant induced by gamma irradiation with a unique fruit shape, gwonje-early, and determination of specific selection markers using allele-specific PCR. Plants, 13(911), 1-11. https://doi.org/10.3390/plants13060911

Franca, A., Antonio, R. G., & Sanna, F. (2017). Shade tolerant legumes - Improving the productivity of mediterranean silvopastures. European Agroforestry Federation. http://europeanagroforestry.eu/node/1686

Guo, T., Wang, S., Tian, Z., Chen, S., Li, X., Zou, S., Tan, Z., Wang, J., Wang, S., Ai, L., & Sui, S. (2024). Integrative analysis of metabolome and transcriptome profiles to evaluate the response mechanisms of Carex adrienii to shade conditions. Agronomy, 14(2800), 1-21. https://doi.org/10.3390/agronomy14122800

Herdiawan, I. (2016). Productivity of Indigofera zollingeriana under different canopy and soil acidity level in oil palm estate. Jurnal Ilmu Ternak dan Veteriner, 21(2), 135-143. https://doi.org/10.14334/jitv.v21i2.1361

Hisham, M. B., Hashim, A. M., Mohd Hanafi, N., Abdul Rahman, N., Abdul Mutalib, N. E., Tan, C. K., Nazli, M. H., & Mohd Yusoff, N. F. (2022). Bacterial communities associated with silage of different forage crops in Malaysian climate analysed using 16S amplicon metagenomics. Scientific Reports, 12(1), 1–17. https://doi.org/10.1038/s41598-022-08819-4

Hutapea, P. S., Abdullah, L., Karti, P. D. M. H., & Anas, I. (2018). Improvement of Indigofera zollingeriana production and methionine content through inoculation of nitrogen-fixing bacteria. Tropical Animal Science Journal, 41(1), 37–45. https://doi.org/10.5398/tasj.2018.41.1.37

Ishak, I. (2023). Genetic variability of mutant rice (Oryza sativa) genotype induced by gamma rays. Biodiversitas, 24(6), 3300–3306. https://doi.org/10.13057/biodiv/d240624

Jiang, A., Liu, J., Gao, W., Ma, R., Zhang, J., Zhang, X., Du, C., Yi, Z., Fang, X., & Zhang, J. (2023). Transcriptomic and metabolomic analyses reveal the key genes related to shade tolerance in soybean. International Journal of Molecular Sciences, 24(14230), 1-15. https://doi.org/10.3390/ijms241814230

KATR/BPN. (2020). Rencana strategis kementerian agraria dan tata ruang/Badan Pertanahan Nasional tahun 2020-2024. https://jdih.atrbpn.go.id/pencarian/peraturan?keyword=27+tahun+2020

Kumar, N., Chahal, A., Kantwa, S. R., Singh, G., & Singh, S. (2023). Production and quality of Napier bajra hybrid (Pennisetum purpureum × Pennisetum americanum) in Eucalyptus tereticornis based silvi-pastoral system. Agroforestry Systems, 97(8), 1613–1626. https://doi.org/10.1007/s10457-023-00882-8

Li, F., Shimizu, A., Nishio, T., Tsutsumi, N., & Kato, H. (2019). Comparison and characterization of mutations induced by gamma-ray and carbon-ion irradiation in rice (Oryza sativa L.) using whole-genome resequencing. G3: Genes, Genomes, Genetics, 9(11), 3743–3751. https://doi.org/10.1534/g3.119.400555

Li, W., Katin-Grazzini, L., Gu, X., Wang, X., El-Tanbouly, R., Yer, H., Thammina, C., Inguagiato, J., Guillard, K., McAvoy, R. J., Wegrzyn, J., Gu, T., & Li, Y. (2017). Transcriptome analysis reveals differential gene expression and a possible role of gibberellins in a shade-tolerant mutant of perennial ryegrass. Frontiers in Plant Science, 8(868), 1-12. https://doi.org/10.3389/fpls.2017.00868

Li, W., Katin-Grazzini, L., Krishnan, S., Thammina, C., El-Tanbouly, R., Yer, H., Merewitz, E., Guillard, K., Inguagiato, J., McAvoy, R. J., Liu, Z., & Li, Y. (2016). A novel two-step method for screening shade tolerant mutant plants via dwarfism. Frontiers in Plant Science, 7(1495), 1-12. https://doi.org/10.3389/fpls.2016.01495

Lista, F. N., Deminicis, B. B., De Carvalho Almeida, J. C., Do Carmo Araujo, S. A., & Zanella, P. G. (2019). Forage production and quality of tropical forage legumes submitted to shading. Ciencia Rural, 49(7), 1-13. https://doi.org/10.1590/0103-8478cr20170726

Liu, D., Cui, Y., Zhao, Z., Zhang, J., Li, S., & Liu, Z. (2022). Transcriptome analysis and mining of genes related to shade tolerance in foxtail millet (Setaria italica (L.) P. Beauv.). Royal Society Open Science, 9(10), 1-17. https://doi.org/10.1098/rsos.220953

Lorenzo, C. D., Alonso Iserte, J., Sanchez Lamas, M., Antonietti, M. S., Garcia Gagliardi, P., Hernando, C. E., Dezar, C. A. A., Vazquez, M., Casal, J. J., Yanovsky, M. J., & Cerdán, P. D. (2019). Shade delays flowering in Medicago sativa. Plant Journal, 99(1), 7–22. https://doi.org/10.1111/tpj.14333

Mahyuddin, P., & Purwantari, N. D. (2009). The neutral detergent fiber digestibility of some tropical grasses at different stage of maturity. Animal Production, 11(3), 189–195. http://animalproduction.net/index.php/JAP/article/view/244

Malaviya, D. R., Baig, M. J., Kumar, B., & Kaushal, P. (2020). Effects of shade on Guinea grass genotypes Megathyrsus maximus (Poales: Poaceae). Revista de Biologia Tropical, 68(2), 563–572. https://doi.org/10.15517/rbt.v68i2.38362

Martinez-Garcia, J. F., & Rodriguez-Concepcion, M. (2023). Molecular mechanisms of shade tolerance in plants. New Phytologist, 239(4), 1190–1202. https://doi.org/10.1111/nph.19047

dos Santos Neto, C. F., da Silva, R. G., Maranhão, S. R., Cavalcante, A. C. R., Macedo, V. H. M., & Cândido, M. J. D. (2023). Shading effect and forage production of tropical grasses in Brazilian semi-arid silvopastoral systems. Agroforestry Systems, 97(6), 995–1005. https://doi.org/10.1007/s10457-023-00843-1

Niinemets, U. (2010). A Review of light interception in plant standfrom leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecologycal Research, 25, 693-714. https://doi.org/10.1007/s11284-010-0712-4

Niinemets, U., & F. Valladares. (2004). Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints. Plant Biology, 6(3), 254–268. https://doi.org/10.1055/s-2004-817881

Paciullo, D. S. C., Gomide, C. A. M., Castro, C. R. T., Maurício, R. M., Fernandes, P. B., & Morenz, M. J. F. (2017). Morphogenesis, biomass and nutritive value of Panicum maximum under different shade levels and fertilizer nitrogen rates. Grass and Forage Science, 72(3), 590–600. https://doi.org/10.1111/gfs.12264

Pang, K., Van Sambeek, J. W., Navarrete-Tindall, N. E., Lin, C. H., Jose, S., & Garrett, H. E. (2019). Responses of legumes and grasses to non-, moderate, and dense shade in Missouri, USA. I. Forage yield and its species-level plasticity. Agroforestry Systems, 93(1), 11–24. https://doi.org/10.1007/s10457-017-0067-8

Panigrahy, M., Ranga, A., Das, J., & Panigrahi, K. C. S. (2019). Shade tolerance in Swarnaprabha rice is associated with higher rate of panicle emergence and positively regulated by genes of ethylene and cytokinin pathway. Scientific Reports, 9(1), 1–17. https://doi.org/10.1038/s41598-019-43096-8

Qin, F., Shen, Y., Li, Z., Qu, H., Feng, J., Kong, L., Teri, G., Luan, H., & Cao, Z. (2022). Shade delayed flowering phenology and decreased reproductive growth of Medicago sativa L. Frontiers in Plant Science, 13(835380), 1-11. https://doi.org/10.3389/fpls.2022.835380

Rofiq, M. N., Martono, S., Surachman, M., & Angga D., I. W. (2015). Kualitas nutrisi dan kecernaan nyata bahan kering in vitro (IVTDMD) pakan hijauan cover crop kebun sawit untuk ternak ruminansia di kabupaten pelalawan. Jurnal Sains dan Teknologi Indonesia, 17(1), 1–6.

Saha, U., Sonon, L., Hancock, D., Hill, N., Stewart, L., Heusner, G., & Kissel, D. E.. (2023). Common terms used in animal feeding and nutrition. UGA Cooperative Extension Bulletin. 1367.

Sheng, J., Wang, G., Liu, T., Xu, Z., & Zhang, D. (2022). Comparative transcriptomic and proteomic profiling reveals molecular models of light signal regulation of shade tolerance in bowl lotus (Nelumbo nucifera). Journal of Proteomics, 257(104455), 1-17. https://doi.org/10.1016/j.jprot.2021.104455

Soares, A. B., Bernardon, A., & Aiolfi, R. B. (2016). Forage yield, rate of CO2 assimilation, and quality of temperate annual forage species grown under artificial shading conditions. Ciência Rural, 46(6), 1064–1069. https://doi.org/10.1590/0103-8478cr20141779

Springer, R. W., Cherry, N. M., Raub, R. H., Wellmann, K. B., & Jones, T. N. (2023). Estimation of in vitro true digestibility and fiber degradation from feedstuff fiber composition when incubated in equine fecal inoculum. Animals, 13(23), 1–15. https://doi.org/10.3390/ani13233699

Su, Y., Hao, X., Zeng, W., Lai, Z., Pan, Y., Wang, C., Guo, P., Zhang, Z., He, J., Xing, G., Wang, W., Zhang, J., Sun, Z., & Gai, J. (2024). Genome-wide association with transcriptomics reveals a shade-tolerance gene network in soybean. Crop Journal, 12(1), 232–243. https://doi.org/10.1016/j.cj.2023.11.013

Suharlina, Astuti, D. A., Nahrowi, Jayanegara, A., & Abdullah, L. (2016). In vitro evaluation of concentrate feed containing Indigofera zollingeriana in goat. Journal of the Indonesian Tropical Animal Agriculture, 41(4), 196–203. https://doi.org/10.14710/jitaa.41.4.196-203

Tan, C., Zhang, X. Q., Wang, Y., Wu, D., Bellgard, M. I., Xu, Y., Shu, X., Zhou, G., & Li, C. (2019). Characterization of genome-wide variations induced by gamma-ray radiation in barley using RNA-Seq. BMC Genomics, 20(1), 1–8. https://doi.org/10.1186/s12864-019-6182-3

Teixeira, R. T. (2020). Distinct responses to light in plants. Plants, 9(7), 1–14. https://doi.org/10.3390/plants9070894

Tsaniya, S. H., Wijayanto, N., & Wirnas, D. (2022). An evaluation of an agroforestry system with 2-year-old sengon (Paraserianthes falcataria) and shade-tolerant upland rice. Biodiversitas, 23(2), 1159–1166. https://doi.org/10.13057/biodiv/d230261

Valladares, F., & Niinemets, Ü. (2008). Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics, 39, 237–257. https://doi.org/10.1146/annurev.ecolsys.39.110707.173506

Wang, S., Zhang, B., Yang, Q., Chen, G., Yang, B., Lu, L., Shen, M., & Peng, Y. (2017). Responses of net primary productivity to phenological dynamics in the Tibetan Plateau China. Agricultural and Forest Meteorology, 232, 235-246. https://doi.org/10.1016/j.agrformet.2016.08.020

Wu, M., Li, Z., & Wang, J. (2020). Transcriptional analyses reveal the molecular mechanism governing shade tolerance in the invasive plant Solidago canadensis. Ecology and Evolution, 10(10), 4391–4406. https://doi.org/10.1002/ece3.6206

Xu, H., Chen, P., & Tao, Y. (2021). Understanding the shade tolerance responses through hints from phytochrome a-mediated negative feedback regulation in shade avoiding plants. Frontiers in Plant Science, 12(813092), 1–10. https://doi.org/10.3389/fpls.2021.813092

Yang, C., Xie, F., Jiang, Y., Li, Z., Huang, X., & Li, L. (2018). Phytochrome a negatively regulates the shade avoidance response by increasing auxin/indole acidic acid protein stability. Developmental Cell, 44(1), 29-41. https://doi.org/10.1016/j.devcel.2017.11.017

Zhang, X., Li, Y., Yan, H., Cai, K., Li, H., Wu, Z., Wu, J., Yang, X., Jiang, H., Wang, Q., Qu, G., & Zhao, X. (2022a). Integrated metabolomic and transcriptomic analyses reveal different metabolite biosynthesis profiles of Juglans mandshurica in shade. Frontiers in Plant Science, 13(991874), 1-18. https://doi.org/10.3389/fpls.2022.991874

Zhang, Y. X., Niu, Y. Q., Wang, X. F., Wang, Z. H., Wang, M. L., Yang, J., Wang, Y. G., Zhang, W. J., Song, Z. P., & Li, L. F. (2022b). Phenotypic and transcriptomic responses of the shade-grown species Panax ginseng to variable light conditions. Annals of Botany, 130(5), 749–762. https://doi.org/10.1093/aob/mcac105

Authors

J. I. Royani
L. Abdullah
labdull@apps.ipb.ac.id (Primary Contact)
Sudarsono
S. I. Aisyah
D. Hardianto
P. S. Negoro
R. D. Purba
B. S. Azahra
RoyaniJ. I., AbdullahL., Sudarsono, AisyahS. I., HardiantoD., NegoroP. S., PurbaR. D., & AzahraB. S. (2025). Shade Selection of Indigofera zollingeriana Miq Putative Mutant: Evaluation of Plant Growth, Biomass Production, Nutrient Contents, and In Vitro Digestibility. Tropical Animal Science Journal, 48(2), 120-131. https://doi.org/10.5398/tasj.2025.48.2.120

Article Details