Isolation and Characterization of the Microbiological and Physicochemical Qualities, the Protein and Amino Acid Profiles of Fermented Chicken and Duck Egg Ovalbumin
Abstract
The objective of this study was to isolate and characterize the microbiological and physicochemical qualities, and the protein and amino acid profiles of fermented chicken and duck egg ovalbumin (OVA). The OVA was fermented using lactic acid bacteria (LAB) Lactobacillus paracasei M104 taken from goat milk and yeast Kluyveromyces marxianus KFA9 obtained from kefir. The OVA and fermented OVA were characterized by analyzing its electrophoresis and spectral profile on FTIR, amino acid profile, and microbiological and physicochemical properties. The findings indicated that the chicken and duck OVA showed a molecular weight between 45-55 kDa. The amount of LAB in OVA before and after fermentation was not significantly different. However, the amount of yeast decreased after fermentation. The concentrations of soluble protein, total free amino acids, and alcohol in the fermented chicken OVA were higher than those in fermented duck OVA. The OVA of chicken and duck eggs showed a comparable pattern in specific bands within the FTIR spectrum. However, there were several different bands in the FTIR spectra between OVA and fermented OVA. Specific carbohydrate-containing bands were notably absent in the fermented OVA. After fermentation, the chicken OVA indicated an increase in all types of amino acid concentrations. Conversely, the amino acid concentrations were constant before and after fermentation in duck OVA. The changes in the secondary structure of protein may affect its functional characteristics, which needs further studies. It is expected that fermented OVA produced using local starters can be used as an ingredient in functional foods.
References
Abd-Elaziz, M., Osman, A., Ibraheim, W., & Doheim, M. (2018). Comparative studies of egg albumin from different sources. Zagazig Journal of Agricultural Research, 45(3), 1003-1010. https://doi.org/10.21608/zjar.2018.49150
Abeyrathne, E. D., Lee, H. Y., & Ahn, D. U. (2014). Separation of ovotransferrin and ovomucoid from chicken egg white. Poultry Science, 93(4), 1010–1017. https://doi.org/10.3382/ps.2013-03649
Arora, R., Behera, S., Sharma, N. K., & Kumar, S. (2015). A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production. Frontiers in Microbiology, 6, 889. https://doi.org/10.3389/fmicb.2015.00889
Attia, Y. A., Al-Harthi, M. A., Korish, M. A., & Shiboob, M. H. (2020). Protein and amino acid content in four brands of commercial table eggs in retail markets in relation to human requirements. Animals, 10(3), 406. https://doi.org/10.3390/ani10030406
Baron, F., Nau, F., Guérin-Dubiard, C., Bonnassie, S., Gautier, M., Andrews, S. C., & Jan, S. (2016). Egg white versus Salmonella Enteritidis! A harsh medium meets a resilient pathogen. Food Microbiology, 53(Part B), 82–93. https://doi.org/10.1016/j.fm.2015.09.009
Chen, B. M., Cheng, T. L., & Roffler, S. R. (2021). Polyethylene glycol immunogenicity: theoretical, clinical, and practical aspects of anti-polyethylene glycol antibodies. ACS Nano, 15(9), 14022–14048. https://doi.org/10.1021/acsnano.1c05922
Choa, H. Y., Leea, J. E., Leeb, J. H., Ahnc, D. U., & Paik, H. D. (2023). The immune-enhancing activity of egg white ovalbumin hydrolysate prepared with papain via MAPK signaling pathway in RAW 264.7 macrophage. Journal of Functional Foods, 103(2023), 1-12. https://doi.org/10.1016/j.jff.2023.105487
Doblado, R., Frias, J., Muñoz, R., & Vidal-Valverde, C. (2003). Fermentation of Vigna sinensis var. carilla flours by natural microflora and Lactobacillus species. Journal of Food Protection, 66(12), 2313–2320. https://doi.org/10.4315/0362-028X-66.12.2313
Fadlelmoula, A., Pinho, D., Carvalho, V. H., Catarino, S. O., & Minas, G. (2022). Fourier transform infrared (FTIR) spectroscopy to analyse human blood over the last 20 years: A Review towards Lab-on-a-Chip Devices. Micromachines, 13(2), 1-21. https://doi.org/10.3390/mi13020187
Fu, L., Wang, R., Zhou, J., Wang, C., & Wang, Y. (2023). Site-specific N glycosylation characterization and allergenicity analysis of globulin-1 S allele from wheat. Food Science and Human Wellness, 12(5), 1601-1608. https://doi.org/10.1016/j.fshw.2023.02.020
Geng, F., Xie, Y., Wang, J., Li, S., Jin, Y., & Ma, M. (2019). Large-scale purification of ovalbumin using polyethylene glycol precipitation and isoelectric precipitation. Poultry Science, 98(3), 1545–1550. https://doi.org/10.3382/ps/pey402
Giosafto, C. V. L., Rigby, N., Sorrentino, A., Mulholland, F., Mills, C., & Mackie, A. R. (2016). Optimization of in vitro n-deglycosylation of ovomucoid protein. MOJ Food Processing & Technology, 2(6), 205-212. https://doi.org/10.15406/mojfpt.2016.02.00058
Hashim, H. O., Al-Shuhaib, M. B. S., & Ewadh, M. J. (2019). Heterogenity of protein in birds ‘egg-whites. Biotropia, 26(2), 65–81. https://doi.org/10.11598/btb.2019.26.2.812
He, H., Wang J., Gong, P., Xiao, Y., Li, S., Wang, J., & Geng, F. (2024). Structural identification and immunomodulatory effects of chicken egg white glycopeptides. LWT - Food Science Technology, 200, 1-13. https://doi.org/10.1016/j.lwt.2024.116195
Jiang, Y., Jia, J., Xiong, D., Xu, X., Yang, Y., Liu, X., & Duan, X. (2020). Effects of short-term fermentation with lactic acid bacteria on egg white: characterization, rheological and foaming activities. Food Hydrocolloids, 101, 1-9. https://doi.org/10.1016/j.foodhyd.2019.105507
Jia, J., Ji, B., Tian, L., Lie, M., Lu, M., Ding, L., Liu, X., & Duan, X. (2021). Mechanism study on enhanced foaming properties of individual albumen proteins by Lactobacillus fermentation. Food Hydrocolloids, 111, 1-9. https://doi.org/10.1016/j.foodhyd.2020.106218
Johny, L. C., Kudre, T. G., & Suresh, P. V. (2022). Production of egg white hydrolysate by digestion with pineapple bromelain: optimization, evaluation and antioxidant activity study. Journal of Food Science and Technology, 59, 1769–1780. https://doi.org/10.1007/s13197-021-05188-0
Joshi, D., & Soni, R. K. (2012). Laser induced gold nanoparticle egg white protein conjugation and thermal denaturation. In International Conference Fiber Optics Photonics, OSA Techical Digest. Chennai, India, 1-3. https://doi.org/10.1364/PHOTONICS.2012.MPo.3
Kanaka, K. K., Jeevan, C., Chethan, R. R., Sagar, N. G., Prasad, R., Prasad, C. K., & Shruthi, S. A. (2018). Review on ovalbumin gene in poultry. Journal of Entomology and Zoology Studies, 6(4), 1497-1503.
Koga, K., Fukunaga, T., & Hirase, Y. (1969). Studies on the duck egg white proteins, especially the ovalbumin. The Meeting Western Japanese Division of Agricultural Chemical Society, Japan 39-51.
Kong, J., & Yu, S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, 39(8), 549–559. https://doi.org/10.1111/j.1745-7270.2007.00320.x
Kurniawati, M., Nurliyani, N., Budhijanto, W., & Widodo, W. (2022). Isolation and identification of lactose-degrading yeasts and characterisation of their fermentation-related ability to produce ethanol. Fermentation, 8(4), 1-11. https://doi.org/10.3390/fermentation8040183
Lee, J. H., & Paik, H. D. (2019). Anticancer and immunomodulatory activity of egg proteins and peptides: a review. Poultry Science, 98(12), 6505–6516. https://doi.org/10.3382/ps/pez381
Li, H., Chen, X., Guo, Y., Hou, T., & Hu, J. (2022a). A pivotal peptide (Ile-Leu-Lys-Pro) with high ACE- inhibitory activity from duck egg white: identification and molecular docking. Food Science and Technology, 42, 1-11. https://doi.org/10.1590/fst.66121
Li, Z., Huang, X., Tang, Q., Ma, M., Jin, Y., & Sheng, L. (2022b). Functional properties and extraction techniques of chicken egg white proteins. Foods, 11(16), 1-19. https://doi.org/10.3390/foods11162434
Li, S., Jiang, Y., Jiang, L., Tuo, Y., Mu, G., & Jiang, S. (2023). Safety evaluation, hydrolysis activity of Kluyveromyces marxianus JY-1 and its application to obtain immunomodulatory peptide from bovine casein. Food Bioscience, 56, 1-9. https://doi.org/10.1016/j.fbio.2023.103409
Liu, L., Li, Y., Prakash, S., Dai, X., & Meng, Y. (2018). Enzymolysis and glycosylation synergistic modified ovalbumin: functional and structural characteristics. International Journal of Food Properties, 21(1), 395–406. https://doi.org/10.1080/10942912.2018.1424198
Luo, X., Wang, Q., Wu, Y., Duan, W., Zhang, Y., Geng, F., Song, H., Huang, Q., & An, F. (2022). Mechanism of effect of heating temperature on functional characteristics of thick egg white. LWT - Food Science Technology, 154, 1-8. https://doi.org/10.1016/j.lwt.2021.112807
Marino, R., Iammarino, M., Santillo, A., Muscarella, M., Caroprese, M., & Albenzio, M. (2010). Technical note: rapid method for determination of amino acids in milk. Journal of Dairy Science, 93(6), 2367–2370. https://doi.org/10.3168/jds.2009-3017
Mine, Y., & Kovacs-Nolan, J. (2005). Biologically active peptides derived from egg proteins. XIth European Symposium on the Quality Eggs Egg Products. Doorwerth, The Netherlands. 23-26 May 2025 (pp. 343-350).
Munjal, M., & Khan, F. (2018). Isolation, purification and characterization of ovalbumin from hen egg white and to develop and isolate antibodies against it. International Journal of Advanced Microbiology and Health Research, 2(3), 37-46.
Naes, H., & Nissen-Meyer, J. (1992). Purification and N-terminal amino acid sequence determination of the cell-wall-bound proteinase from Lactobacillus paracasei subsp. paracasei. Journal of General Microbiology, 138(2), 313–318. https://doi.org/10.1099/00221287-138-2-313
Nurliyani, N., Erwanto, Y., Rumiyati, R., & Sukarno, A. S. (2023). Characteristics of protein and amino acid in various poultry egg white ovomucoid. Food Science and Technology, 43(e101722), 1-10. https://doi.org/10.1590/fst.101722
Ogundiran, M. B., & Fasakin, S. A. (2015). Assessment of heavy metals and crude protein content of molluscs and crustaceans from two selected cities in Nigeria. African Journal of Food, Agriculture, Nutrition and Development, 15(3), 10099-10117. https://doi.org/10.18697/ajfand.70.13275
Pereira, M. M., Cruz, R. A. P., Almeida, M. R., Lima, A. S., Coutinho, J. A. P., & Freire, M. G. (2016). Single-step purification of ovalbumin from egg white using aqueous biphasic systems. Process Biochemistry, 51(6), 781–791. https://doi.org/10.1016/j.procbio.2016.03.002
Pokora, M., Eckert, E., Zambrowicz, A., Bobak, T., Szołtysik, M., Dazbrowska, A., Chrzanowska, J., Polanowski, A., & Trziszka, T. (2013). Biological and functional properties of proteolytic enzyme modified egg protein by-products. Food Science & Nutrition, 1(2), 184– 195. https://doi.org/10.1002/fsn3.27
Quan, T. H., & S. Benjakul. (2019). Duck egg albumen: physicochemical and functional properties as affected by storage and processing. Journal of Food Science and Technology, 56, 1104–1115. https://doi.org/10.1007/s13197-019-03669-x
Rodrussamee, N., Lertwattanasakul, N., Hirata, K., Suprayogi, Limtong, S., Kosaka, T., & Yamada, M. (2011). Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Applied Microbiology and Biotechnology, 90, 1573–1586. https://doi.org/10.1007/s00253-011-3218-2
Shi, Y-J., Wang, R-T., Chu, Y-H., Chen, Y-J., Tang, C-C., Fu, Y-S., Lee, Y-C., Wang, L-J., Huang, C-H., & Chang, L-S. (2018). Membrane-damaging activities of mannosylated ovalbumin are involved in its antibacterial action. Archives of Biochemistry and Biophysics, 639, 1-8. https://doi.org/10.1016/j.abb.2017.12.006
Sun, Y., & Hayakawa, S. (2002). Heat-induced gels of egg white/ovalbumins from five avian species: Thermal aggregation, molecular forces involved, and rheological properties. Journal of Agricultural and Food Chemistry, 50(6), 1636–1642. https://doi.org/10.1021/jf0109975
Sun, W., Shahrajabian, M. H., & Lin, M. (2022). Research progress of fermented functional foods and protein factory-microbial fermentation technology. Fermentation, 8(12), 688. https://doi.org/10.3390/fermentation8120688
Tarhan, O., Gözler, M., Yavuz, R. C., & Şimşek, M. (2020). Effect of heat treatment on protein fractions of edible poultry eggs. Akademik Gıda, 18(3), 233-240. https://doi.org/10.24323/akademik-gida.818076
Tumanggor, B. G., Suci, D. M., & Suharti, S. (2017). Kajian pemberian pakan pada itik dengan sistem pemeliharaan intensif dan semi intensif di peternakan rakyat. Buletin Ilmu Makanan Ternak, 104(1), 21-29.
Vesković, A., Bajuk-Bogdanović, D., Arion, V. B., & Bijelić, A. P. (2022). Spectroscopic characterization of the binding and release of hydrophilic, hydrophobic and amphiphilic molecules from ovalbumin supramolecular hydrogels. Gels, 9(1), 1-16. https://doi.org/10.3390/gels9010014
Vieira, C. P., Rosario, A. I. L. S., Lelis, C. A., Rekowsky, B. S. S., Carvalho, A. P. A., Rosário, D. K. A., Elias, T. A., Costa, M. P., Foguel, D., & Conte-Junior, C. A. (2021). Bioactive compounds from kefir and their potential benefits on health: a systematic review and meta-analysis. Oxidative Medicine and Cellular Longevity, 2021(1), 9081738. https://doi.org/10.1155/2021/9081738
Widodo, W., Sakti, A. P., Sukarno, A. S., Wahyuni, E., & Nurliyani, N. (2019). The effect of different starter cultures of Lactobacillus paracasei M 104 and Pediococcus pentosaceus M103 on the physicochemical and microbial qualities of fermented goat milk. Jurnal Ilmu Teknologi Hasil Ternak, 14(2), 70-77. https://doi.org/10.21776/ub.jitek.2019.014.02.1
Yang, Y., Barendregt, A., Kamerling, J. P., & Heck, A. J. (2013). Analyzing protein micro-heterogeneity in chicken ovalbumin by high-resolution native mass spectrometry exposes qualitatively and semi-quantitatively 59 proteoforms. Analytical Chemistry, 85(24), 12037–12045. https://doi.org/10.1021/ac403057y
Yanga, W., Tu, Z., Wang, H., Zhang, L., Gao, Y., Lia, X., & Tian, M. (2017). Immunogenic and structural properties of ovalbumin treated bypulsed electric fields. International Journal of Food Properties, 20(3), S3164–S3176. https://doi.org/10.1080/10942912.2017.1396479
Yao, K., Guo, W., Yao, Y., Wu, N., Xu, M., Zhao, Y., Tu, Y. (2022). Properties, digestion, and peptide release of heat-induced duck egg white. LWT - Food Science Technology, 154, 1-10. https://doi.org/10.1016/j.lwt.2021.112788
Zhang, D. D., Liu, J. L., Jiang, T. M., Li, L., Fang, G. Z., Liu, Y. P., & Chen, L. J. (2017). Influence of Kluyveromyces marxianus on proteins, peptides, and amino acids in Lactobacillus-fermented milk. Food Science and Biotechnology, 26, 739–748. https://doi.org/10.1007/s10068-017-0094-2
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.