The Prediction of Somatic Cell Count Through Multilayer Perceptron of Deep Machine Learning

M. İ. Yeşil, S. Göncü

Abstract

The main objective of the research is to generate an alternative approach to classical techniques in the prediction of the somatic cell count (SCC), which is the gold standard indicator of subclinical mastitis. This approach involves using the physical properties of milk such as density, the temperature at fore milking (TFM), pH, and electrical conductivity (EC) with a feed-forward backpropagation multilayer perceptron (MLP) artificial neural networks (ANN) model, which is one of the widely used machine learning techniques. The performance of the model was assessed by test with cross-validation on data that was not introduced to the model before and compared to the classical linear model (multiple linear regression) as the control model. The findings showed that the model has satisfactory results in terms of loss and performance criteria (R2=0.95, RMSE=0.01; AIC=-338). The test model (ANN) had a higher performance (AIC=-338) than the control model (AIC=-240) created with the classical linear model despite using more parameters (81). Using big data from automated milking information—like estrus cycle, lactation stage, and milk yield—on supercomputers can improve the accuracy of performance assessments in dairy farming.

References

Asadi, B. & H. Jiang. 2020. On approximation capabilities of ReLU activation and softmax output layer in neural networks. arXiv preprint arXiv. 2002.04060. https://doi.org/10.48550/arXiv.2002.04060

Aytekin, I., E. Eyduran, K. Karadas, R. Akşahan, & I. Keskin. 2018. Prediction of fattening final live weight from some body measurements and fattening period in young bulls of crossbred and exotic breeds using MARS data mining algorithm. Pak. J. Zool. 50:189–195. https://doi.org/10.17582/journal.pjz/2018.50.1.189.195

Anglart, D., C. Hallén-Sandgren, U. Emanuelson, & L. Rönnegård. 2020. Comparison of methods for predicting cow composite somatic cell counts. J. Dairy Sci. 103:8433–8442. https://doi.org/10.3168/jds.2020-18320

Bai, J., H. Xue, X. Jiang, & Y. Zhou. 2022. Recognition of bovine milk somatic cells based on multi-feature extraction and a GBDT-AdaBoost fusion model. Math. Biosci. Eng. 19:5850–5866. https://doi.org/10.3934/mbe.2022274

Bobbo, T. S., C. Biffani, Taccioli, M. Penasa, & M. Cassandro. 2021. Comparison of machine learning methods to predict udder health status based on somatic cell counts in dairy cows. Sci. Rep. 11:1–10. https://doi.org/10.1038/s41598-021-93056-4

Cebeci, Z. 2020. Veri Biliminde R Ile Veri Önişleme (N. Argun (ed.). 1st ed. Nobel Akademik Yayıncılık, Ankara. (in Turkish).

Cebeci, Z. 2021. Biyoenformatik Veri Analizinde R ile Hiyerarşik Kümeleme (C. Uğurkaya (ed.); 1st ed.). Papatya Yayınları. (in Turkish).

Coşkun, G., Ö. Şahin, R. A. Delialioğlu, Y. Altay, & İ. Aytekin. 2023. Diagnosis of lameness via data mining algorithm by using thermal camera and image processing method in Brown Swiss cows. Trop. Anim. Health Prod. 55:50. https://doi.org/10.1007/s11250-023-03468-9

Ebrahimi, M., M. Mohammadi-Dehcheshmeh E. Ebrahimie, & K. R. Petrovski. 2019. Comprehensive analysis of machine learning models for prediction of subclinical mastitis: Deep learning and gradient-boosted trees outperform other models. Comput. Biol. Med. 114:103456. https://doi.org/10.1016/j.compbiomed.2019.103456

Eyduran E. & A. Gulbe. 2022. Package “ehaGoF” https://cran.r-project.org/web/packages/ehaGoF/index.html. [January 8, 2023].

Fushiki, T. 2011. Prediction of prediction error by using K-fold cross-validation. Stat. Comput. 21:137–146. https://doi.org/10.1007/s11222-009-9153-8

Harmon, R. J. 1994. Physiology of mastitis and factors affecting somatic cell counts. J. Dairy Sci. 77:2103–2112. https://doi.org/10.3168/jds.S0022-0302(94)77153-8

Hernández-Ramos, P. A., A. M. Vivar-Quintana, & I. Revilla. 2019. Prediction of somatic cell count levels of hard cheeses using physicochemical composition and artificial neural networks. J. Dairy Sci. 102:1014–1024. https://doi.org/10.3168/jds.2018-14787

İnik, O. & E. Ülker. 2017. Deep learning and deep learning models used in image analysis. Gaziosmanpasa Journal Scientific Research 6:85-104.

Kalinowski, T. 2022. CRAN Package keras 2022. https://cran.r-project.org/web/packages/keras/index.html. [January 8, 2023].

Kayaalp, G. T., M. Ç. Güney, & Z. Cebeci. 2015. Çoklu doğrusal regresyon modelinde değişken seçiminin zootekniye uygulanışı. Çukurova Üniversitesi Ziraat Fakültesi Dergisi. 30:1–8. https://dergipark.org.tr/tr/pub/cuzfd/253617 (in Turkish).

Kayaalp, G. T. 2017. Araştırma ve Deneme Metodları. ÇÜ Ziraat Fakültesi Ofset Atölyesi, Adana, pp. 208-282. (in Turkish).

Kusumoto, D. & S. Yuasa. 2019. The application of convolutional neural network to stem cell biology. Inflamm. Regen. 39:1–7. https://doi.org/10.1186/s41232-019-0103-3

Lievaart, J. J., H. W. Barkema, J. V. D. Broek, J. A. P. Heesterbeek, & W. D. J. Kremer. 2010. Prediction of the herd somatic cell count of the following month using a linear mixed effect model. J. Dairy Sci. 93:234–241. https://doi.org/10.3168/jds.2009-2580

Norberg E., H. Hogeveen, I. R. Korsgaard, N. C. Friggens, K. H. M. N. Sloth, & P. Løvendahl. 2004. Electrical conductivity of milk: Ability to predict mastitis status. J. Dairy Sci. 87:1099–1107. https://doi.org/10.3168/jds.S0022-0302(04)73256-7

Panchal, G., A. Ganatra, Y. P. Kosta, & D. Panchal. 2010. Searching the most efficient neural network architecture using akaike’s information criterion (AIC). Int. J. Comput. Appl. 1:54–57. https://doi.org/10.5120/126-242

Panchal, I., I. K. Sawhney, & A. K. Dang. 2016. Relation between electrical conductivity, dielectric constant, somatic cell count, and some other milk quality parameters in the diagnosis of subclinical mastitis in Murrah buffaloes. Indian J. Dairy Sci. 69: 267–271.

Schloerke, B., D. Cook, J. Larmarange, F. Briatte, M. Marbach, & E. Thoen. 2022. CRAN Package GGally 2022. https://cran.r-project.org/web/packages/GGally/index.html. [October 22, 2023].

Soydaner, D. 2020. A comparison of optimization algorithms for deep learning. Intern. J. Pattern Recognit. Artif. Intell. 34:1-10. https://doi.org/10.1142/S0218001420520138

Soyeurt, H., C. Grelet, S. McParland, M. Calmels, M. Coffey, A. Tedde, P. Delhez, F. Dehareng, & N. Gengler. 2020. A comparison of 4 different machine learning algorithms to predict lactoferrin content in bovine milk from mid-infrared spectra. J. Dairy Sci. 103:11585–11596. https://doi.org/10.3168/jds.2020-18870

Too, E. C., L. Yujian, S. Njuki, & L. Yingchun. 2019. A comparative study of fine-tuning deep learning models for plant disease identification. Comput. Electron. Agric. 161:272–279. https://doi.org/10.1016/j.compag.2018.03.032

TUIK. 2021. Tablolar. https://data.tuik.gov.tr/Bulten/Index?p=Hayvansal-Uretim-Istatistikleri-Haziran-2021-37208dil=1# (in Turkish).

Weber, F. de L., V. A. Weber, de M. Menezes, G. V. O. Junior, A. da S. Alves, D. A. de Oliveira, M. V. M. Matsubara, H. E. T. Pistori, & U. G. P. Abreu. 2020. Recognition of pantaneira cattle breed using computer vision and convolutional neural networks. Comput. Electron. Agric.175:105548. https://doi.org/10.1016/j.compag.2020.105548

Wellnitz, O., M. G. Doherr, M. Woloszyn, & R. M. Bruckmaier. 2009. Prediction of total quarter milk somatic cell counts based on foremilk sampling. J. Dairy Res. 76:326–330. https://doi.org/10.1017/S0022029909004166

Yeşil, M. İ. & S. Göncü. 2023. Recognition of hereford and simmental cattle breeds via computer vision. Iran. J. Appl. Anim. Sci. 13:21–32.

Zhang, M., X. Shan, J. Yu, Y. Guo, R. Li, & M. Xu. 2018. Individual dairy cattle recognition based on deep convolutional neural network. J. Donghua Univ. 35:107–112.

Zhao, K. & D. He. 2015. Recognition of individual dairy cattle based on convolutional neural networks. Nongye Gongcheng Xuebao/Transactions Chinese Society Agricultural Engineering 31:181–187.

Zülkadir, U. & F. S. Coşkun. 2018. The use of fuzzy logic approach in evaluation of subclinic mastitis. Selcuk J. Agri. F. Sci. 32:436–439. https://doi.org/10.15316/SJAFS.2018.119

Authors

M. İ. Yeşil
muhammedikbalyesil@gmail.com (Primary Contact)
S. Göncü
YeşilM. İ., & GöncüS. (2024). The Prediction of Somatic Cell Count Through Multilayer Perceptron of Deep Machine Learning. Tropical Animal Science Journal, 47(4), 503-509. https://doi.org/10.5398/tasj.2024.47.4.503

Article Details