Use of Random Regression Models to Estimate the Heritability of Weight Growth in Meat Quails

N. L. Pavan, F. L. de Menezes, M. M. M. Laureano, A. P. S. Ton, S. I. Araújo, R. N. C. Camargo Júnior, W. C. da Silva, É. B. R. da Silva, C. V. de Araújo

Abstract

The aim of this study was to estimate the best covariance function structure, by means of Legendre polynomials using random regression models (RRM) to describe the genetic variability of the weight growth trajectory of quails and to estimate the genetic parameters. Body weight records of animals at 7, 14, 21, 28, 35, and 42 days of age were used. The orders of fit of the polynomials were gradually increased in orders from 3 to 6 for comparison between the models the Akaike information criteria were used. The models included fixed effects of the contemporary group, the fixed regression coefficient of weight on the Legendre polynomial, random regression coefficients of the direct additive genetic, and the permanent environment effects of the animal, in addition to the residual random effect. The RRM with orders five for the additive genetic effect and six for the permanent environment effect, under the assumption of homogeneity, was the most suitable to describe the genetic variability of the birds’ ponderal growth. There was greater expression of additive genetic variability after 21 days, resulting in distinct and increasing heritability estimates between two periods in ponderal development. Estimates of additive genetic correlations for weights between the ages evaluated indicated that genetic associations are more correlated between body weights at closer ages when compared to ages more distant along the growth trajectory. Thus, it is concluded that selection in birds is more efficient from 28 days of age due to the higher heritability values.

References

Abou Khadiga, G., B. Y. F. Mahmoud, G. S. Farahat, A. M. Emam, & E. A. El-Full. 2017. Genetic analysis of partial egg production records in Japanese quail using random regression models. Poult. Sci. 96:2569-2575. https://doi.org/10.3382/ps/pex081

Ahmed, Y. E., M. T. Ibrahim, A. S. Ali, & I. I. Hamid. 2019. Estimation of heritability and phenotypic correlations of certain productive traits of Japanese quail (Coturnix japonica). East African Scholars Journal Agriculture Life Sciences 2:242-246.

Akbarnejad, S., S. Zerehdaran, S. Hassani, F. Samadi, & E. Lotfi. 2015. Genetic evaluation of carcass traits in Japanese quail using ultrasonic and morphological measurements. Br. Poult. Sci. 56:293-298. https://doi.org/10.1080/00071668.2015.1041453

Barbieri, A., R. K. Ono, L. L. Cursino, M. M. Farah, M. P. Pires, T. S. Bertipaglia, A. V. Pires, L. Cavani, L. O. D. Carreño, & R. Fonseca. 2015. Genetic parameters for body weight in meat quail. Poult. Sci. 94:169-171. http https://doi.org/10.3382/ps/peu062

Bhowmik, M. & M. K. I. Khan. 2021. Production performance and heritability value of different traits of quail under intensive rearing conditions. Bangladesh J. Vet. Anim. Sci. 9:23-29. https://doi.org/10.60015/bjvas/V09I2A4

Bonafé, C. M., R. de A. Torres, J. L. R. Sarmento, L. P. da Silva, J. C. Ribeiro, R. B. Teixeira, F. G. da Silva, & M. F. Sousa. 2011. Modelos de regressão aleatória para descrição da curva de crescimento de codornas de corte. R. Bras. Zootec. 40:765-771. https://doi.org/10.1590/S1516-35982011000400009

Caetano, G. da C., R. R. Mota, D. A. da Silva, H. R. de Oliveira, J. M. S. Viana, O. H. G. B. D. de Siqueira, P. H. F. Freitas, & F. F. e Silva. 2017. Bayesian estimation of genetic parameters for individual feed conversion and body weight gain in meat quail. Livest. Sci. 200:76-79. https://doi.org/10.1016/j.livsci.2017.04.011

Cho, C. I., M. Alam, T. J. Choi, Y. H. Choy, J. G. Choi, S. S. Lee, & K. H. Cho. 2016. Models for estimating genetic parameters of milk production traits using random regression models in Korean holstein cattle. Asian-Australas. J. Anim. Sci. 29:607-614. https://doi.org/10.5713/ajas.15.0308

da Silva, W. C., J. A. R. da Silva, L. G. Martorano, É. B. R. da Silva, K. C. de Carvalho, C. E. L. Sousa, K. A. L. Neves, R. N. C. C. Júnior, T. S. Belo, A. G. S. de Santos, C. V. d. Araújo, L. A. Joaquim, T. C. G. d. C. Rodrigues, & J. d. B. Lourenço-Júnior. 2024. Thermal comfort of nelore cattle (Bos indicus) managed in silvopastoral and traditional systems associated with rumination in a humid tropical environment in the Eastern Amazon, Brazil. Vet. Sci. 11:236. https://doi.org/10.3390/vetsci11060236

Ebrahimi, K., G. R. Dashab, H. Faraji-Arough, & M. Rokouei. 2019. Estimation of additive and non-additive genetic variances of body weight in crossbreed populations of the Japanese quail. Poult. Sci. 98:46-55. https://doi.org/10.3382/ps/pey357

El-Attrouny, M. M., E. A. Manaa, & S. I. Ramadan. 2020. Genetic evaluation and selection correlated response of growth traits in Japanese quail. S. Afr. J. Anim. Sci. 50:325-333. https://doi.org/10.4314/sajas.v50i2.16

Farzin, N. & A. Seraj. 2022. Genetic parameters of weekly egg production using random regression models in two strains of Japanese quails. J. Appl. Genet. 63:763-769. https://doi.org/10.1007/s13353-022-00720-0

Felipe, V. P. S., M. A. Silva, R. R. Wenceslau, B. D. Valente, G. G. Santos, L. S. Freitas, G. S. S. Corrêa, & A. B. Corrêa. 2012. Utilização de modelos de norma de reação com variância residual heterogênea para estudo de valores genéticos de peso de codornas de corte em função de níveis de proteína bruta na dieta. Arq. Bras. Med. Vet. Zootec. 64:991-1000. https://doi.org/10.1590/S0102-09352012000400028

Fernandes Filho, C. C., S. C. L. Barrios, M. F. Santos, J. A. R. Nunes, C. B. do Valle, L. Jank, & E. F. Rios. 2023. Assessing genotype adaptability and stability in perennial forage breeding trials using random regression models for longitudinal dry matter yield data. bioRxiv 20:533513. https://doi.org/10.1101/2023.03.20.533513

Ferreira, P. B., P. R. N. Rorato, F. C. Breda, V. T. Michelotti, A. P. Rosa, & A. Macedo. 2017. Genotypic parameters for egg production in pure breed hens by using random regression model. Cienc. Rural 47:e20141631. https://doi.org/10.1590/0103-8478cr20141631

Fonseca, W. J. L., A. F. Evangelista, L. da Silva Borges, G. M. S. Vogado, C. S. M. Luz, D. H. Cavalcante, M. R. A. de Oliveira, & W. F. Vogado. 2016. Application of random regression models for growth traits of nellore cattle in brazil. Nucleus Animalium 8:5. https://doi.org/10.3738/1982.2278.1657

Ghosal, S. & A. van der Vaart. 2017. Fundamentals of nonparametric bayesian inference. United Kingdom: Cambridge University press. https://ideas.repec.org/b/cup/cbooks/9780521878265.html [April 12, 2024]. https://doi.org/10.1017/9781139029834

Hussain, J., M. Akram, A. Sahota, K. Javed, H. Ahmad, S. Mehmood, A. Jatoi, & S. Ahmad. 2014. Selection for higher three week body weight in Japanese quail: 2. Estimation of genetic parameters. J. Anim. Plant Sci. 24:869-873. https://www.thejaps.org.pk/docs/v-24-3/29.pdf [April 13, 2024].

Jahan, M., A. Maghsoudi, M. Rokouei, & H. Faraji-Arough. 2020. Prediction and optimization of slaughter weight in meat-type quails using artificial neural network modeling. Poult. Sci. 99:1363-1368. https://doi.org/10.1016/j.psj.2019.10.072

Júnior, R. N. C. C., C. V. de Araújo, W. C. da Silva, S. I. de Araújo, R. B. Lôbo, L. R. M. Nakabashi, L. M. de Castro, F. L. Menezes, A. G. Maciel e Silva, L. K. X. Silva, J. A. R. da Silva, A. V. C. Barbosa, J. R. F. Marques, & J. de B. Lourenço Júnior. 2023a. Mixed models in nonlinear regression for description of the growth of nelore cattle. Animals 13:101. https://doi.org/10.3390/ani13010101

Júnior, R. N. C. C., C. V. de Araújo, F. L. de Menezes, S. I. de Araújo, N. L. Pavan, M. Rocha-Silva, W. C. da Silva, J. R. Felipe Marques, A. G. Maciel de Silva, H. de M. Chalkidis, & J. de B. L. Júnior. 2023b. Growth curve mixed nonlinear models in quails. PLoS One 18:e0287056. https://doi.org/10.1371/journal.pone.0287056

Karami, K., S. Zerehdaran, B. Barzanooni, & E. Lotfi. 2017a. Genetic analyses of partial egg production in Japanese quail using multi-trait random regression models. Br. Poult. Sci. 58:624-628. https://doi.org/10.1080/00071668.2017.1378423

Karami, K., S. Zerehdaran, M. Tahmoorespur, B. Barzanooni, & E. Lotfi. 2017b. Genetic evaluation of weekly body weight in Japanese quail using random regression models. Br. Poult. Sci. 58:13-18. https://doi.org/10.1080/00071668.2016.1236362

Kheirabadi, K. & A. Rashidi. 2016. Genetic description of growth traits in Markhoz goat using random regression models. Small Rumin. Res. 144:305-312. https://doi.org/10.1016/j.smallrumres.2016.10.003

Li, J., H. Gao, P. Madsen, R. Li, W. Liu, P. Bao, G. Xue, Y. Gao, X. Di, & G. Su. 2020. Impact of the order of legendre polynomials in random regression model on genetic evaluation for milk yield in dairy cattle population. Front Genet. 11. https://doi.org/10.3389/fgene.2020.586155

Miranda, J. A., A. V. Pires, L. R. A. Abreu, L. F. M. Mota, M. A. Silva, C. M. Bonafé, H. J. D. Lima, & P. G. M. A. Martins. 2016. Sensitivity of breeding values for carcass traits of meat-type quail to changes in dietary (methionine + cystine):lysine ratio using reaction norm models. J. Anim. Breed Genet. 133:463-475. https://doi.org/10.1111/jbg.12224

Mohammadi-Tighsiah, A., A. Maghsoudi, F. Bagherzadeh-Kasmani, M. Rokouei, & H. Faraji-Arough. 2018. Bayesian analysis of genetic parameters for early growth traits and humoral immune responses in Japanese quail. Livest. Sci. 216:197-202. https://doi.org/10.1016/j.livsci.2018.07.012

Mota, L., D. Alcântara, L. Abreu, L. Costa, A. Pires, C. Bonafé, M. Silva, & S. Pinheiro. 2015. Crescimento de codornas de diferentes grupos genéticos por meio de modelos não lineares. Arq. Bras. Med. Vet. Zootec. 67:1372-1380. https://doi.org/10.1590/1678-4162-7534

Mota, L. F. M., P. G. M. A. Martins, T. O. Littiere, L. R. A. Abreu, M. A. Silva, & C. M. Bonafé. 2018. Genetic evaluation and selection response for growth in meat-type quail through random regression models using B-spline functions and Legendre polynomials. Animal 12:667-674. https://doi.org/10.1017/S1751731117001951

Mrode, R., J. Ojango, C. Ekine-Dzivenu, H. Aliloo, J. Gibson, & M. A. Okeyo. 2021. Genomic prediction of crossbred dairy cattle in Tanzania: A route to productivity gains in smallholder dairy systems. J. Dairy Sci. 104:11779-11789. https://doi.org/10.3168/jds.2020-20052

Narinç, D. & E. Aydemir. 2022. Genetic parameter estimates of chick quality, growth, and carcass characteristics in Japanese quail. Journal Hellenic Veterinary Medical Society 72:3363-3370. https://doi.org/10.12681/jhvms.29378

Nasirifar, E., E. Rezvannejad, M. Maleki, & M. Sami. 2021. The impact of differential expression of the pectoral muscle proteome in two groups of Japanese quail with different growth rates on meat quality. Br. Poult. Sci. 62:38-45. https://doi.org/10.1080/00071668.2020.1812526

Nasiri Foomani, N., S. Zerehdaran, M. A. Azari, & E. Lotfi. 2014. Genetic parameters for feed efficiency and body weight traits in Japanese quail. Br. Poult. Sci. 55:298-304. https://doi.org/10.1080/00071668.2014.925088

Paiva, J. T., M. D. V. de Resende, R. T. Resende, H. R. de Oliveira, H. T. Silva, G. C. Caetano, P. S. Lopes, & F. F. Silva. 2018. Transgenerational epigenetic variance for body weight in meat quails. J. Anim. Breed Genet. 135:178-185. https://doi.org/10.1111/jbg.12329

Peixoto, M. G. C. D., D. J. de A. Santos, R. R. A. Borquis, F. Â. T. Bruneli, J. C. do C. Panetto, & H. Tonhati. 2014. Random regression models to estimate genetic parameters for milk production of Guzerat cows using orthogonal Legendre polynomials. Pesqui. Agropecu. Bras. 49:373‑383. https://doi.org/10.1590/S0100-204X2014000500007

Ribeiro, J. C., L. P. da Silva, A. C. C. Soares, G. d. C. Caetano, C. D. S. Leite, C. M. Bonafé, M. F. Sousa, & R. de A. Torres. 2017. Genetic parameters for egg production in meat quails through partial periods. Cienc. Rural 47:e20160374. https://doi.org/10.1590/0103-8478cr20160374

Ribeiro, M. J. B., F. F. Silva, M. dos S. Macário, J. A. S. de Jesus, C. O. Brito, A. P. D. Vesco, & L. T. Barbosa. 2021. Choice of non-linear models to determine the growth curve of meat-type quail. Cienc. Rural 51:e20190990. https://doi.org/10.1590/0103-8478cr20190990

Ribeiro, M. J. B., F. F. e Silva, C. O. Brito, A. P. D. Vesco, M. S. Macário, C. M. Silva, & L. T. Barbosa. 2020. Quail growth curve model identity. Res. Soc. Dev. 9:e9439109328. https://doi.org/10.33448/rsd-v9i10.9328

Rossi, R. M. & E. Gasparino. 2018. Avaliação genética para a postura de codornas por meio de modelos de regressão aleatória. Braz. J. Biom. 36:360-375. https://doi.org/10.28951/rbb.v36i2.190

Sarvari-Kalouti, H., A. Maghsoudi, M. Rokouei, H. Faraji-Arough, & F. Bagherzadeh-Kasmani. 2023. Direct and maternal genetic effects for preinflection point growth traits and humoral immunity in quail. Poult. Sci. 102:102340. https://doi.org/10.1016/j.psj.2022.102340

Silva, A. A., D. A. Silva, C. R. M. Pereira, C. P. Abreu, G. Caetano, J. T. Paiva, F. F. Silva, P. S. Lopes, & R. Veroneze. 2021. Exploring the use of residual variance for uniformity of body weight in meat quail lines using Bayesian inference. Br. Poult. Sci. 62:474-484. https://doi.org/10.1080/00071668.2021.1894320

Sousa Júnior, S. C., R. P. Sousa, K. R. Santos, & L. C. Pires. 2019. Utilização de modelos de regressão aleatória para obtenção de parâmetros genéticos de bovinos da raça tabapuã. Ciênc. Anim. Bras. 20:1-14. https://doi.org/10.1590/1089-6891v20e-49928

Sousa, M. S., I. d. F. F. Tinôco, A. G. Amaral, K. R. A. Inoue, S. L. Barreto, H. Savastano Jr, C. F. Souza & M. O. Paula. 2014. Thermal comfort zones for starter meat-type quails. Braz. J. Poultry Sci. 16:265-272. https://doi.org/10.1590/1516-635x1603265-272

Taskin, A., U. Karadavut, R. I. Tunca, S. Genc, & H. Cayan. 2017. Effect of selection for body weight in Japanese quails (Coturnix coturnix Japonica) on some production traits. Indian J. Anim. Res 51:358-364. https://doi.org/10.18805/ijar.11466

Tırınk, C., S. Alkan & Y. K. Arıcı. 2022. The use of some nonlinear functions to explain growth in Japanese quails with multivariate adaptive regression splines algorithm. Turk. J. Food. Agric. Sci. 10:1807-1813. https://doi.org/10.24925/turjaf.v10i10.1807-1813.5410

Wang, Y., C. Diao, H. Kang, W. Hao, R. Mrode, J. Chen, J. Liu, & L. Zhou. 2022. A random regression model based on a single-step method for improving the genomic prediction accuracy of residual feed intake in pigs. Front. Genet 12. https://doi.org/10.3389/fgene.2021.769849

Zerehdaran, S., E. Lotfi, & Z. Rasouli. 2012. Genetic evaluation of meat quality traits and their correlation with growth and carcase composition in Japanese quail. Br. Poult. Sci. 53:756-762. https://doi.org/10.1080/00071668.2012.746445

Ziadi, C., E. Muñoz-Mejías, M. Sánchez, M. D. López, O. González-Casquet, & A. Molina. 2021. Genetic analysis of reproductive efficiency in Spanish goat breeds using a random regression model as a strategy for improving female fertility. Ital. J. Anim. Sci. 20:1681-1688. https://doi.org/10.1080/1828051X.2021.1979900

Authors

N. L. Pavan
F. L. de Menezes
M. M. M. Laureano
A. P. S. Ton
S. I. Araújo
R. N. C. Camargo Júnior
camargojunior@gmail.com (Primary Contact)
W. C. da Silva
É. B. R. da Silva
C. V. de Araújo
PavanN. L., MenezesF. L. de, LaureanoM. M. M., TonA. P. S., AraújoS. I., Camargo JúniorR. N. C., SilvaW. C. da, Silva É. B. R. da, & AraújoC. V. de. (2024). Use of Random Regression Models to Estimate the Heritability of Weight Growth in Meat Quails. Tropical Animal Science Journal, 47(4), 409-416. https://doi.org/10.5398/tasj.2024.47.4.409

Article Details