The Metagenomic Analysis of the Pig Digestive System Microbiome as a Basis for Disease Control on Farming in Tangerang District, Indonesia
Abstract
Characteristics of microbiome of the pig’s digestive tract play an important role in the animal’s physiology, including metabolism, nutrient processing, the body’s immune response, and disease resistance. This study aims to analyze the abundance and diversity of microorganisms (pathogenic and non-pathogenic) from the digestive system of pigs on farms in Tangerang District. The samples used in this research were pig feces from 43 pig farms in Tangerang District. Then DNA extraction was carried out using the Zymo Quick-DNA Fecal/Soil Microbe Kit according to manufacturing procedures. Sequencing was performed using an MGI DNBSEQ-G50 machine with a DNBSEQ-G50RS High-throughput sequencing set (FCL PE100) according to manufacturing procedures. The quality of fastq files was evaluated with FastQC. Taxonomic classification of the processed sequences was performed using Diamond, followed by MEGAN6. The microbiome of the pig’s digestive system was dominated by bacteria (85%) with the taxonomic profile at the phylum level of abundance dominated by Firmicutes (84.46%) and Bacteroidetes (9.11%). Abundance at the genus level was dominated by Enterococcus (20.44%) and Clostridium (10.31%), and at the species level it was dominated by Escherichia coli (4.92%) and Levilactobacillus brevis (4.84%). There were 10 species of pathogenic bacteria detected, with E. coli showing the highest relative abundance (4.92%). Changes in the gut microbiome play an important role in the physiology of animal health and disease. In addition, the pathogenic bacteria detected not only affect the health and productivity of pigs but also have the potential to threaten public health.
References
Bağcı, C., S. Patz, & D. H Huson. 2021. Diamond+ Megan: Fast and easy taxonomic and functional analysis of short and long microbiome sequences. Curr. Protoc. 1:5901-5930. https://doi.org/10.1002/cpz1.59
Bergamaschi, M., F. Tiezzi, J. Howard, Y. J Huang, K. A. Gray, C. Schillebeeckx, N. P. McNulty, & C. Maltecca. 2020. Gut microbiome composition differences among breeds impact feed efficiency in swine. Microbiome 8:110. https://doi.org/10.1186/s40168-020-00888-9
BPS. 2023. Populasi Ternak Menurut Kabupaten/Kota dan Jenis Ternak di Provinsi Banten (Ekor), 2019-2021. Badan Pusat Statistik Provinsi Banten. https://banten.bps.go.id/indicator/24/193/1/populasi-ternak-menurut-kabupaten-kota-dan-jenis-ternak.html [February 7, 2023].
Brestoff, J. R. & D. Artis. 2013. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14:676–684. https://doi.org/10.1038/ni.2640
Cao, Z., J. Liang, X. Liao, A. Wright, Y. Wu, & B. Yu. 2016. Effect of dietary fiber on the methanogen community in the hindgut of Lantang gilts. Animal. 10:1666-1676. https://doi.org/10.1017/S1751731116000525
CDC. 2024. Salmonella. Centers for Disease Control and Prevention. https://www.cdc.gov/salmonella/index.html [January 19, 2024].
Che, L. H., B. Chen, J. Yu, P. He. X. Zheng, J. Mao, Z. Yu, Huang, & D. Chen. 2014. Long-term intake of pea fiber affects colonic barrier function, bacterial and transcriptional profile in pig model. Nutr. Cancer. 66:388-399. https://doi.org/10.1080/01635581.2014.884229
Dale, A. P. & N. Woodford. 2015. Extra-intestinal pathogenic Escherichia coli (ExPEC): Disease, carriage and clones. J. Infect. 71:615-626. https://doi.org/10.1016/j.jinf.2015.09.009
Deng, F., Y. Li, Y. Peng, X. Wei, X. Wang, S. Howe, H. Li, J. Zhao, & Y. Li. 2021. The diversity, composition, and metabolic pathways of archaea in pigs. Animals 11:2139. https://doi.org/10.3390/ani11072139
Deng, F., Y. Peng, Z. Zhang, S. Howe, Z. Wu, J. Dou, Y. Li, X. Wei, X. Wang, Y. Liang, J. Zhao, & Y. Li. 2022. Weaning time affects the archaeal community structure and functional potential in pigs. Front. Microbiol. 13:845621. https://doi.org/10.3389/fmicb.2022.845621
Dolan, G. P., K. Foster, J. Lawler, C. Amar, C. Swift, H. Aird, & R. Gorton. 2016. An epidemiological review of gastrointestinal outbreaks associated with Clostridium perfringens, North East of England, 2012–2014. Epidemiol Infect. 144:1386-1393. https://doi.org/10.1017/S0950268815002824
European Food Safety Authority & European Centre for Disease Prevention and Control. 2022. The european union one health 2021 zoonoses report. EFSA J. 20:e07666. https://doi.org/10.2903/j.efsa.2022.7666
Fairbrother, J. M. & É. Nadeau. 2019. Colibacillosis. John Wiley & Son, USA. p. 807-834. https://doi.org/10.1002/9781119350927.ch52
Farrokh, C., K. Jordan, F. Auvray, K. Glass, H. Oppegaard, S. Raynaud, D. Thevenot, R. Condron, K. D. Reu, A. Govaris, K. Heggum, M. Heyndrickx, J. Hummerjohann, D. Lindsay, S. Miszczycha, S. Moussiegt, K. Verstraete, & O. Cerf. 2013. Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. Int. J. Food Microbiol. 162:190–212. https://doi.org/10.1016/j.ijfoodmicro.2012.08.008
Feehan, B., Q. Ran, V. Dorman, K. Rumback, S. Pogranichniy, K. Ward, R. Goodband, M. C. Niederwerder, & S. T. M. Lee. 2023. Novel complete methanogenic pathways in longitudinal genomic study of monogastric age-associated archaea. Animal Microbiome 5:35. https://doi.org/10.1186/s42523-023-00256-6
Fouhse, J. M., R. T. Zijlstra, & B. P. Willing. 2016. The role of gut microbiota in the health and disease of pigs. Anim. Front. 6:30-36. https://doi.org/10.2527/af.2016-0031
Giuffrè, L., D. Giosab, G. Galeanoa, R. A. Ciglianoc, A. Paytuvı-Gallartc, A. M. Suteraa, G. Tardioloa, A. Zumboa, O. Romeod, & E. D’Alessandroa. 2021. Whole-metagenome shotgun sequencing of pig faecal microbiome. Ital. J. Anim. Sci. 20:1147–1155. https://doi.org/10.1080/1828051X.2021.1952910
Gormley, F. J., C. L. Little, N. Rawal, I. A Gillespie, S. Lebaigue, & G. K. Adak. 2011. A 17-year review of foodborne outbreaks: Describing the continuing decline in England and Wales (1992–2008). Epidemiol. Infect. 139:688-699. https://doi.org/10.1017/S0950268810001858
He, Y., K. Kim, L. Kovanda, C. Jinno, M. Song, J. Chase, X. Li, B. Tan, & Y. Liu. 2020. Bacillus subtilis: a potential growth promoter in weaned pigs in comparison to carbadox. J. Anim. Sci. 98:skaa290. https://doi.org/10.1093/jas/skaa290
Heida, F. H., A. G. J. F. van Zoonen, J. B. F. Hulscher, B. J. C. Te Kiefte, R. Wessels, E. M. W. Kooi, A. F. Bos, H. J. M. Harmsen, & M. C. de Goffau. 2016. A necrotizing enterocolitis-associated gut microbiota is present in the meconium: Results of a prospective study. Clin. Infect. Dis. 62:863-870. https://doi.org/10.1093/cid/ciw016
Hill, C., F. Guarner, G. Reid, G. R. Gibson, D. J. Merenstein, B. Pot, L. Morelli, R. B. Canani, H. J. Flint, S. Salminen, P. C. Calder, & M. E. Sanders. 2014. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11:506–514. https://doi.org/10.1038/nrgastro.2014.66
Hou, C., H. Liu, J. Zhang, S. Zhang, F. Yang, X. Zeng, P. A. Thacke, G. Zhang, & S. Qiao. 2015. Intestinal microbiota succession and immunomodulatory consequences after introduction of Lactobacillus reuteri I5007 in neonatal piglets. PLoS One 10:e0119505. https://doi.org/10.1371/journal.pone.0119505
Jacobi, S. K. & J. Odle. 2012. Nutritional factors influencing intestinal health of the neonate. Adv. Nutr. 3:687–696. https://doi.org/10.3945/an.112.002683
Jiang, H., S. Fang, H. Yang, & C. Chen. 2021. Identification of the relationship between the gut microbiome and feed efficiency in a commercial pig cohort. J. Anim. Sci. 2021:1-32. https://doi.org/10.1093/jas/skab045
Khan, U., S. Atanasova, K. R. Krueger, W. S. A. Ramirez, & G. C. Gray. 2013. Epidemiology, geographical distribution, and economic consequences of swine zoonoses: A narrative review. Emerg. Microb. Infect. 2:e92. https://doi.org/10.1038/emi.2013.87
Kirk, M. D., S. M. Pires, R. E. Black, M. Caipo, J. A. Crump, B. Devleesschauwer, D. Döpfer, A. Fazil, C. L. Fischer-Walker, T. Hald, A. J. Hall, K. H. Keddy, R. J. Lake, C. F. Lanata, P. R. Torgerson, A. H. Havelaar, & F. J. Angulo. 2015. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases 2010. A data synthesis. PLoS Med. 12:e1001921. https://doi.org/10.1371/journal.pmed.1001921
Kiu, R. & L. J. Hall. 2018. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg. Microbes Infect. 7:1-15. https://doi.org/10.1038/s41426-018-0144-8
Konstantinov, S. R., H. Smidt, A. D. L. Akkermans, L. Casini, P. Trevisi, M. Mazzoni, S. De Filippi, P. Bosi, & W. M. De Vos. 2008. Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets. FEMS Microbiol. Ecol. 66:599-607. https://doi.org/10.1111/j.1574-6941.2008.00517.x
Li, Y., Y. Zhu, H. Wei, Y. Chen, & H. Shang. 2020. Study on the diversity and function of gut microbiota in pigs following long-term antibiotic and antibiotic-free breeding. Curr. Microbiol. 77:4114-4128. https://doi.org/10.1007/s00284-020-02240-8
Luo, Y., Y. Su, A. G. Wright, L. Zhang, H. Smidt, & W. Zhu. 2012. Lean breed landrace pigs harbor fecal methanogens at higher diversity and density than obese breed Erhualian pigs. Archaea 2012:605289. https://doi.org/10.1155/2012/605289
Luppi, A. 2017. Swine enteric colibacillosis: Diagnosis, therapy and antimicrobial resistance. Porcine Health Manag.3:16. https://doi.org/10.1186/s40813-017-0063-4
Mach, N., M. Berri, J. Estellé, F. Levenez, G. Lemonnier, C. Denis, J. J. Leplat, C. Chevaleyre, Y. Billon, & J. Dorë. 2015. Eary-life establishment of the swine gut microbiome and impact on host phenotypes. Environ. Microbiol. Rep. 7:554–569. https://doi.org/10.1111/1758-2229.12285
Magnusson, K. R., L. Hauck, B. M. Jeffrey, V. Elias, A. Humphrey, R. Nath, A. Perrone, & L. E. Bermudez. 2015. Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience 300:128-140. https://doi.org/10.1016/j.neuroscience.2015.05.016
Marchesi, J. R. & J. Ravel. 2015. The vocabulary of microbiome research: A proposal. Microbiome. 3:1-3. https://doi.org/10.1186/s40168-015-0094-5 https://doi.org/10.1186/gm485
Miller, R. R., V. Montoya, J. L. Gardy, D. M. Patrick, & P. Tang. 2013. Metagenomics for pathogen detection in public health. Genome Med. 5:1-14. https://doi.org/10.1186/gm485
Million, M., F. Thuny, E. Angelakis, J. P. Casalta, R. Giorgi, G. Habib, & D. Raoult. 2013. Lactobacillus reuteri and Escherichia coli in the human gut microbiota may predict weight gain associated with vancomycin treatment. Nutr. Diabetes. 3:e87. https://doi.org/10.1038/nutd.2013.28
Naqid, I. A., J. P. Owen, B. C. Maddison, D. S. Gardner, N. Foster, M. A. Tchórzewska, R. M. La Ragione, & K. C. Gough. 2015. Prebiotic and probiotic agents enhance antibody-based immune responses to Salmonella typhimurium infection in pigs. Anim. Feed Sci. Technol. 201:57-65. https://doi.org/10.1016/j.anifeedsci.2014.12.005
Pascoe, E. L, H. C. Hauffe, J. R. Marchesi, & S. E. Perkins. 2017. Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies. ISME J. 11:2644–2651. https://doi.org/10.1038/ismej.2017.133
Patil, Y., R. Gooneratne, & X. H. Ju. 2020. Interactions between host and gut microbiota in domestic pigs: a review. Gut Microbes. 11:310-334. https://doi.org/10.1080/19490976.2019.1690363
Pridmore, R. D., B. Berger, F. Desiere, D. Vilanova, C. Barretto, A. C. Pittet, M. C. Zwahlen, M. Rouvet, E. Altermann, R. Barrangou, B. Mollet, A. Mercenier, T. Klaenhammer, F. Arigoni, & M. A. Schell. 2004. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc. Natl. Acad. Sci. U. S. A. 101:2512–2517. https://doi.org/10.1073/pnas.0307327101
Pringsulaka, O., K. Rueangyotchanthana, N. Suwannasai, R. Watanapokasin, P. Amnueysit, S. Sunthornthummas, S. Sukkhum, S. Sarawaneeyaruk, & A. Rangsiruji. 2015. In vitro screening of lactic acid bacteria for multi-strain probiotics. Livest. Sci. 174:66-73. https://doi.org/10.1016/j.livsci.2015.01.016
Quan, J., Z. Wu, Y. Ye, L. Peng, J. Wu, D. Ruan, Y. Qiu, R. Ding, X. Wang, E. Zheng, G. Cai, W. Huang, & J. Yang. 2020. Metagenomic characterization of intestinal regions in pigs with contrasting feed efficiency. Front. Microbiol. 11:1-13. https://doi.org/10.3389/fmicb.2020.00032
Revitt-Mills, S. A., J. I. Rood, & V. Adams. 2015. Clostridium perfringens extracellular toxins and enzymes: 20 and counting. Microbiol. Aust. 36:114-117. https://doi.org/10.1071/MA15039
Schwab, C., D. Berry, I. Rauch, I. Rennisch, J. Ramesmayer, E. Hainzl, S. Heider, T. Decker, L. Kenner, M. Müller, B. Strobl, M. Wagner, C. Schleper, A. Loy, & T. Urich. 2014. Longitudinal study of murine microbiota activity and interactions with the host during acute inflammation and recovery. ISME J. 8:1101–1114. https://doi.org/10.1038/ismej.2013.223
Sim, K., A. G. Shaw, P. Randell, M. J. Cox, Z. E. McClure, M. Li, M. Haddad, P. R. Langford, W. O. C. M. Cookson, M. F. Moffatt, & J. S. Kroll. 2015. Dysbiosis anticipating necrotizing enterocolitis in very premature infants. Clin. Infect. Dis. 60:389-397. https://doi.org/10.1093/cid/ciu822
Soliani, L., G. Rugna, A. Prosperi, C. Chiapponi, & A. Luppi. 2023. Salmonella infection in pigs: Disease, prevalence, and a link between swine and human health. Pathogens 12:1-24. https://doi.org/10.3390/pathogens12101267
Tam, C. C., L. C. Rodrigues, L.Viviani, J. P. Dodds, M. R. Evans, P. R. Hunter, J. J. Gray, L. H. Letley, G. Rait, D. S. Tompkins, & S. J. O’Brien. 2012. Longitudinal study of infectious intestinal disease in the UK (IID2 study): Incidence in the community and presenting to general practice. Gut 61:69-77. https://doi.org/10.1136/gut.2011.238386
VanderWaal, K. & J. Deen. 2018. Global trends in infectious diseases of swine. Proc. Natl. Acad. Sci. U. S. A. 115:11495-11500. https://doi.org/10.1073/pnas
Waite, D. W. & M. W. Taylor. 2015. Exploring the avian gut microbiota: current trends and future directions. Front. Microbiol. 6:1-12. https://doi.org/10.3389/fmicb.2015.00673
Wu, G. D., J. Chen, C. Hoffmann, K. Bittinger, Y. Y. Chen, S. A. Keilbaugh, M. Bewtra, D. Knights, W. A. Walters, R. Knight, R. Sinha, E. Gilroy, K. Gupta, R. Baldassano, L. Nassel H. Li, F. D. Bushman, & J. D. Lewis. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108. https://doi.org/10.1126/science.1208344
Xiao, Y., F. Kong, Y. Xiang, W. Zhou, J. Wang, H. Yang, G. Zhang, & J. Zhao. 2018. Comparative biogeography of the gut microbiome between Jinhua and Landrace pigs. Sci. Rep. 8:5985. https://doi.org/10.1038/s41598-018-24289-z
Xiong, X., Y. Rao, X. Tu, Z. Wang, J. Gong, Y. Yang, H. Wu, & X. Liu. 2022. Gut archaea associated with bacteria colonization and succession during piglet weaning transitions. BMC Vet. Res. 18:243. https://doi.org/10.1186/s12917-022-03330-4
Yang, F., C. Hou, X. Zeng, & S. Qiao. 2015. The use of lactic acid bacteria as a probiotic in swine diets. Pathogens 4:34-45. https://doi.org/10.3390/pathogens4010034
Yang, H., M. Yang, S. Fang, X. Huang, M. He, S. Ke, J. Gao, J. Wu, Y. Zhou, H. Fu, C. Chen, & L. Huang. 2018. Evaluating the profound effect of gut microbiome on host appetite in pigs. BMC Microbiol. 18:215. https://doi.org/10.1186/s12866-018-1364-8
Zhou, J., Z. He, Y. Yang, Y. Deng, S. G. Tringe, & L. Alvarez-Cohen. 2015. High-throughput metagenomic technologies for complex microbial community analysis: Open and closed formats. mBio. 6: e02288-14. https://doi.org/10.1128/mBio.02288-14
Zhang, W., Y. H. Zhu, D. Zhou, Q. Wu, D. Song, J. Dicksved, & J. Wang. 2017. Oral administration of a select mixture of Bacillus probiotics affects the gut microbiota and goblet cell function following Escherichia coli challenge in newly weaned pigs of genotype MUC4 that are supposed to be enterotoxigenic E. coli F4ab/ac receptor negative. Appl. Environ. Microbiol. 83:e02747-16. https://doi.org/10.1128/AEM.02747-16
Zhao, G., Y. Xiang, X. Wang, B. Dai, X. Zhang, L. Ma, H. Yang, & W. Lyu. 2022. Exploring the possible link between the gut microbiome and fat deposition in pigs. Oxid. Med. Cell Longev. 2022:1098892. https://doi.org/10.1155/2022/1098892
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.