Performance of Thin-Tailed Sheep Fed Cassava Peel Silage-Based Diet with Different Protein Supplements
Abstract
Growing sheep using native grass or crop byproducts has been commonly practiced by farmers in East Java, Indonesia. Better growth rates can be achieved when protein and energy sources are combined in the ration. This study aimed to evaluate the effect of feeding cassava peel silage (CPS) and different protein sources on the growth of sheep fed a maize stover-based diet. Twenty-four growing sheep aged 8-10 months and weighing 17.24 ± 1.87 kg were used, and they were kept in individual cages that allowed the measurements of feed intake, feces, and urine secreted per animal. The treatments applied were T1: rice bran (0.75% BW)+Urea (2% CPS); T2: (50% rice bran + 50% copra meal in 1.5% BW); T3: cassava leaf hay (1% BW); and T4: sunflower leaf hay (1% BW). All treatments provided maize stover (MS) at 0.5% of body weight and CPS ad libitum. The variables measured were nutrient intake and digestibility, rumen fermentation, and live weight gain (LWG). The results revealed that the treatments had a significant increase (p<0.01) in the digestibility of CP, EE, CF, NDF, and ADF and reduced the amount of methane gas (CH4). Additionally, the treatments had a significant increase (p<0.01) in some variables such as N retention, LWG, and reduced FCR. Furthermore, the treatments significantly increased (p<0.05) NH3, propionic acid, and the C2/C3 ratio, but they did not have a significant effect on pH, acetic acid, or butyric acid content. In summary, the T3 treatment improved live weight gain (LWG) and decreased the feed conversion ratio (FCR) in thin-tailed sheep.
References
AOAC. 1995. Official Methods of Analysis. 16th Edition. Association of Official Analytical Chemists, Washington, DC, USA.
Anaeto, M., A. F. Sawyerr, T. R. Alli, G. O. Tayo, J. A. Adeyeye, & A. O. Olarinmoye. 2013. Cassava leaf silage and cassava peel as dry season feed for West African dwarf sheep. Glob. J. Sci. Front. Res. D. Agr. Vet. Sci. 13:1-4.
Anyanwu, C. N., C. N. Ibeto, S. L. Ezeoha, & N. J. Ogbuagu. 2015. Sustainability of cassava (Manihot esculenta Crantz) as industrial feedstock, energy and food crop in Nigeria. Renew. Energy 81:745-752. https://doi.org/10.1016/j.renene.2015.03.075
Conway, E. J. 1962. Microdiffusion Analysis and Volumetric Error. 5th Revised Edition, 370 Crosby Lockwood and Son Ltd., London. p. 98-100.
Dos Santos Silva, J. F., M. T. de C. Souza, M. S. B. Vieira, R. F. Praxedes, V. V. S. de Almeida, A. C. Oliveira, & D. M. de L. Júnior. 2020. The replacement of grass hay by cassava foliage hay or spineless cactus improves lamb performance. Trop. Anim. Health Prod. 52:1623-1630. https://doi.org/10.1007/s11250-019-02171-y
Fadiyimu, A. A., J. A. Alokan, A. N. Fajemisin, & G. E. Onibi. 2016. Feed intake, growth performance and carcass characteristics of West African dwarf sheep fed Moringa oleifera, Gliricidia sepium or cassava fodder as supplements to Panicum maximum. J. Exp. Agr. Int. 14:1-10. https://doi.org/10.9734/JEAI/2016/25167
Fasae, O. A., I. F. Adu, A. B. J. Aina, & M. A. Dipeolu. 2011. Growth performance, carcass characteristics and meat sensory evaluation of West African dwarf sheep fed varying levels of maize and cassava hay. Trop. Anim. Health Prod. 43:503-510. https://doi.org/10.1007/s11250-010-9723-y
Fasuyi, A. O. & P. Okeke. 2014. Extrapolating nutritional potentials of ensiled wild sunflower (Tithonia diversifolia) leaf meal: Proximate composition and functional properties. Int. J. Biol. Chem. Sci. 8:8-16. https://doi.org/10.4314/ijbcs.v8i1.2
Fernández, R., R. M. Dinsdale, A. J. Guwy, & G. C. Premier. 2016. Critical analysis of methods for the measurement of volatile fatty acids. Crit. Rev. Environ. Sci. Technol. 46:209-234. https://doi.org/10.1080/10643389.2015.1073493
Ferreira, L. M., G. Hervás, A. Belenguer, R. Celaya, M. A. M. Rodrigues, U. García, & K. Osoro. 2017. Comparison of feed intake, digestion and rumen function among domestic ruminant species grazing in upland vegetation communities. J. Anim. Physiol. Anim. Nutr. 101:846-856. https://doi.org/10.1111/jpn.12474
Guimarães, G. S., F. F. D. Silva, L. L. D. Silva, L. M. G. Galvão, L. M. D. Santos, & A. M. Alencar. 2014. Intake, digestibility and performance of lambs fed with diets containing cassava peels. Ciência Agrotecnologia 38:295-302. https://doi.org/10.1590/S1413-70542014000300010
Heuzé, V., G. Tran, H. Archimède, C. Régnier, & D. Bastianelli. 2016. Cassava roots. Feedipedia, FAO. https://agritrop.cirad.fr/582466/7/ID582466_ENG.pdf. [February 13, 2024].
Jiwuba, P. C. & F. O. Udemba. 2019. Productive and physiological characteristics of West African dwarf goats fed cassava root sievate-cassava leaf meal based diet. Acta Fytotechn. Zootechn. 22:64-70. https://doi.org/10.15414/afz.2019.22.03.64-70
Langda, S., C. Zhang, K. Zhang, B. Gui, D. Ji, C. Deji, & Y. Wu. 2020. Diversity and composition of rumen bacteria, fungi, and protozoa in goats and sheep living in the same high-altitude pasture. Animals 10:186. https://doi.org/10.3390/ani10020186
McDonald, P., R. A. Edwards, J. F. D. Greenhalgh, C. A. Morgan, L. A. Sinclair, & R. G. Wilkinson. 2022. Animal Nutrition. 8th Edition. Harlow: United Kingdom: Pearson Education Limited. p. 184-185.
Naeem, A., J. K. Drackley, J. Stamey, & J. J. Loor. 2012. Role of metabolic and cellular proliferation genes in ruminal development in response to enhanced plane of nutrition in neonatal Holstein calves. J. Dairy Sci. 95:1807-1820. https://doi.org/10.3168/jds.2011-4709
Niayale, R., W. Addah, & A. A. Ayantunde. 2020. Effects of ensiling cassava peels on some fermentation characteristics and growth performance of sheep on-farm. Ghana J. Agr. Sci. 55:107-121. https://doi.org/10.4314/gjas.v55i2.9
Olmo-González, C., D. M. Verdecia-Acosta, L. G. Hernández-Montiel, A. Ojeda-Rodríguez, J. L. Ramírez-de la Ribera, & Y. Martínez-Aguilar. 2022. Chemical composition of the foliage meal of Tithonia diversifolia. Enfoque UTE 13:1-10. https://doi.org/10.29019/enfoqueute.856
Oni, A. O., O. S. Sowande, O. O. Oni, R. Y. Aderinboye, P. A. Dele, V. O. A. Ojo, & C. F. I. Onwuka. 2014. Effect of additives on fermentation of cassava leaf silage and ruminal fluid of West African dwarf goats. Arch. Zootec. 63:449-459. https://doi.org/10.4321/S0004-05922014000300006
Reddy, P. R. K. & I. Hyder. 2023. Ruminant Digestion. Textbook of Veterinary Physiology, Springer Nature, Singapore. pp. 353-366. https://doi.org/10.1007/978-981-19-9410-4_14
Retnaningrum, S., K. J. Harper, & D. P. Poppi. 2021. Formulating rations with cassava meal to promote high live weight gain in crossbred Limousin bulls. Animals 15:100125. https://doi.org/10.1016/j.animal.2020.100125
Santos, V. L. F., M. A. Ferreira, M. C. B. Siqueira, T. T. B. Melo, J. L. Silva, I. B. Andrade, & C. T. F. Costa. 2015. Rumen parameters of sheep fed cassava peel as a replacement for corn. Small Rum. Res. 133:88-92. https://doi.org/10.1016/j.smallrumres.2015.09.010
Tadele, Y. & N. Amha. 2015. Use of different non protein nitrogen sources in ruminant nutrition: A review. Advances Life Science Technology 29:100-105.
Van Soest, P. J., J. B. Robertson, & B. A. Lewis. 1991. Methods for dietary fibre, neutral deter gent fibre and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Wanapat, M. & S. Kang. 2015. Cassava chip (Manihot esculenta Crantz) as an energy source for ruminant feeding. Anim. Nutr. 1:266-270. https://doi.org/10.1016/j.aninu.2015.12.001
Wanapat, M. & S. Kang. 2013. Enriching the nutritive value of cassava as feed to increase ruminant productivity. J. Nutr. Ecol. Food Res. 1:262-269. https://doi.org/10.1166/jnef.2013.1048
Wang, M., X. Z. Sun, P. H. Janssen, S. X. Tang, & Z. L. Tan. 2014. Responses of methane production and fermentation pathways to the increased dissolved hydrogen concentration generated by eight substrates in in vitro ruminal cultures. Anim. Feed Sci. Technol. 194:1-11. https://doi.org/10.1016/j.anifeedsci.2014.04.012
Zhu, Y., G. Sun, L. Dunzhu, X. Li, L. Zhaxi, S. Zhaxi, & Q. Peng. 2023. Effects of different dietary protein level on growth performance, rumen fermentation characteristics and plasma metabolomics profile of growing yak in the cold season. Animals 13:367. https://doi.org/10.3390/ani13030367
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.