Chemometrics Assisted LC-HRMS Non-Targeted Metabolomics for Discrimination of Beef, Chicken, and Wild Boar Meats

A. Windarsih, A. Rohman, Y. Khasanah, Y. Erwanto, N. K. Abu Bakar

Abstract

Meat authentication is very important to avoid adulteration, substitution, and mislabeling of meats and meat-based products to protect consumers by ensuring quality, safety, and halal status. This research aimed to employ metabolomics approach using liquid chromatography-high resolution mass spectrometry (LC-HRMS) to identify metabolites of beef (BM), chicken meat (CM), and wild boar meat (WBM) as well as to identify the discriminating metabolites of BM-WBM and CM-WBM. The chemometrics of principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) were used to differentiate BM, CM, and WBM. The orthogonal projection to latent structures-discriminant analysis (OPLS-DA) was used to discriminate and identify discriminating metabolites of BM-WBM and CM-WBM through the variable importance for projections (VIP) value analysis (VIP>1.50, p<0.05). The heatmap plot showed the distribution of discriminating metabolites in BM, CM, and WBM samples. The results of this study suggested that untargeted LC-HRMS successfully identified metabolites in meats. In addition, chemometrics could be used to discriminate between BM, CM, and WBM clearly. In summary, the combination of LC-HRMS and chemometrics is promising for the authentication of meats to ensure the quality as well as halal status of meats.

References

Böhme, K., P. Calo-Mata, J. Barros-Velázquez, & I. Ortea. 2019. Recent applications of omics-based technologies to main topics in food authentication. Trends. Environ. Anal. Chem. 110:221–32. https://doi.org/10.1016/j.trac.2018.11.005

Cama-Moncunill, R., A. P. Moloney, F. T. Röhrle, G. Luciano, & F. J. Monahan. 2021. Canonical discriminant analysis of the fatty acid profile of muscle to authenticate beef from grass-fed and other beef production systems: Model development and validation. Food Control 122:107820. ttps://doi.org/10.1016/j.foodcont.2020.107820

Castillo, S. & D. M. Gatlin. 2018. Dietary requirements for leucine, isoleucine and valine (branched-chain amino acids) by juvenile red drum Sciaenops ocellatus. Aquac. Nutr. 24:1056–65. https://doi.org/10.1111/anu.12644

Cozzolino, D., D. Bureš, & L. C. Hoffman. 2023. Evaluating the use of a similarity index (SI) combined with near infrared (NIR) spectroscopy as method in meat species authenticity. Foods 12:182-92. https://doi.org/10.3390/foods12010182

Dashti, A., Y. Weesepoel, J. Müller-Maatsch, H. Parastar, F. Kobarfard, B. Daraei, & H. Yazdanpanah. 2022. Assessment of meat authenticity using portable Fourier transform infrared spectroscopy combined with multivariate classification techniques. Microchem. J. 181:107735. https://doi.org/10.1016/j.microc.2022.107735

Delgado, J., D. Ansorena, T. Van Hecke, I. Astiasarán, S. De Smet, & M. Estévez. 2021. Meat lipids, NaCl and carnitine: Do they unveil the conundrum of the association between red and processed meat intake and cardiovascular diseases?- Invited Review. Meat Sci. 171:108278. https://doi.org/10.1016/j.meatsci.2020.108278

Dinis, K., L. Tsamba, E. Jamin, & V. Camel. 2023. Untargeted metabolomics-based approach using UHPLC-HRMS to authenticate carrots (Daucus carota L.) based on geographical origin and production mode. Food Chem. 423:136273. https://doi.org/10.1016/j.foodchem.2023.136273

Hrbek, V., K. Zdenkova, D. Jilkova, E. Cermakova, M. Jiru, K. Demnerova, J. Pulkrabova, & J. Hajslova. 2020. Authentication of meat and meat products using triacylglycerols profiling and by DNA analysis. Foods 9:1–19. https://doi.org/10.3390/foods9091269

Jeong, J. Y., M. Kim, S. Y. Ji, Y. C. Baek, S. Lee, Y. K. Oh, K. E. Reddy, H. W. Seo, S. Cho, & H. J. Lee. 2020. Metabolomics Analysis of the beef samples with different meat qualities and tastes. Food Sci. Anim. Resour. 40:924-37. https://doi.org/10.5851/kosfa.2020.e59

López-Pedrouso, M., A. A. Zaky, J. M. Lorenzo, M. Camiña, & D. Franco. 2023. A review on bioactive peptides derived from meat and by-products: Extraction methods, biological activities, applications and limitations. Meat Sci. 204:109278. https://doi.org/10.1016/j.meatsci.2023.109278

López-Ruiz, R., R. Romero-González, & A. Garrido Frenich. 2019. Ultrahigh-pressure liquid chromatography-mass spectrometry: An overview of the last decade. Trends. Environ. Anal. Chem. 118:170–81. https://doi.org/10.1016/j.trac.2019.05.044

Mialon, N., B. Roig, E. Capodanno, & A. Cadiere. 2023. Untargeted metabolomic approaches in food authenticity: A review that showcases biomarkers. Food Chem. 398: 133856. https://doi.org/10.1016/j.foodchem.2022.133856

Nie, C., T. He, W. Zhang, G. Zhang, & X. Ma. 2018. Branched chain amino acids: Beyond nutrition metabolism. Int. J. Mol. Sci. 19:954. https://doi.org/10.3390/ijms19040954

Owolabi, I. O. & J. A. Olayinka. 2021. Incidence of fraud and adulterations in ASEAN food/feed exports: A 20-year analysis of RASFF’s notifications. PLoS One 16:e0259298. https://doi.org/10.1371/journal.pone.0259298

Paul, A., P. De, & B. Harrington. 2021. Chemometric applications in metabolomic studies using chromatography-mass spectrometry. Trends Environ. Anal. Chem. 135:116165. https://doi.org/10.1016/j.trac.2020.116165

Pranata, A. W., N. D. Yuliana, L. Amalia, & N. Darmawan. 2021. Volatilomics for halal and non-halal meatball authentication using solid-phase microextraction-gas chromatography-mass spectrometry. Arab. J. Chem. 14:103146. https://doi.org/10.1016/j.arabjc.2021.103146

Premanandh, J. 2013. Horse meat scandal – A wake-up call for regulatory authorities. Food Control 34:568–569. https://doi.org/10.1016/j.foodcont.2013.05.033

Qu, C., Y. Li, S. Du, Y. Geng, M. Su, & H. Liu. 2022. Raman spectroscopy for rapid fingerprint analysis of meat quality and security: Principles, progress and prospects. Food Res. Int. 161:111805. https://doi.org/10.1016/j.foodres.2022.111805

Ryan, J. T., R. P. Ross, D. Bolton, G. F. Fitzgerald, & C. Stanton. 2011. Bioactive peptides from muscle sources: Meat and fish. Nutrients 3:765. https://doi.org/10.3390/nu3090765

Selamat, J., N. A. A. Rozani, & S. Murugesu. 2021. Application of the metabolomics approach in food authentication. Molecules 26:1–26. https://doi.org/10.3390/molecules26247565

Sentandreu, M. Á. & E. Sentandreu. 2014. Authenticity of meat products: Tools against fraud. Food Res. Int. 60:19–29. https://doi.org/10.1016/j.foodres.2014.03.030

Siswara, H. N., Y. Erwanto, & E. Suryanto. 2022. Study of meat species adulteration in Indonesian commercial beef meatballs related to halal law implementation. Front. Sustain. Food Syst. 6:271–80. https://doi.org/10.3389/fsufs.2022.882031

Song, X., E. Canellas, & C. Nerin. 2021. Screening of volatile decay markers of minced pork by headspace-solid phase microextraction–gas chromatography–mass spectrometry and chemometrics. Food Chem. 342:128341. https://doi.org/10.1016/j.foodchem.2020.128341

Suratno, A. Windarsih, H. D. Warmiko, Y. Khasanah, A. W. Indrianingsih, & A. Rohman. 2023. Metabolomics and proteomics approach using LC-Orbitrap HRMS for the detection of pork in tuna meat for halal authentication. Food Anal. Methods 16:867–877. https://doi.org/10.1007/s12161-023-02472-x

Trivedi, D. K., K. A. Hollywood, N. J. W. Rattray, H. Ward, D. K. Trivedi, J. Greenwood, D. I. Ellis, & R. Goodacre. 2016. Meat, the metabolites: An integrated metabolite profiling and lipidomics approach for the detection of the adulteration of beef with pork. Analyst 141:2155. https://doi.org/10.1039/C6AN00108D

Wang, J., Z. Xu, H. Zhang, Y. Wang, X. Liu, Q. Wang, J. Xue, Y. Zhao, & S. Yang. 2021. Meat differentiation between pasture-fed and concentrate-fed sheep/goats by liquid chromatography quadrupole time-of-flight mass spectrometry combined with metabolomic and lipidomic profiling. Meat Sci. 173:108374. https://doi.org/10.1016/j.meatsci.2020.108374

Wang, X., G. Jiang, E. Kebreab, J. Li, X. Feng, C. Li, X., Zhang, X. Huang, C. Fang, R. Fang, & Q. Dai. 2020. 1H NMR-based metabolomics study of breast meat from Pekin and Linwu duck of different ages and relation to meat quality. Food Res. Int. 133:109126. https://doi.org/10.1016/j.foodres.2020.109126

Windarsih, A., A. Rohman, N. K. A. Bakar, & Y. Erwanto. 2023. Metabolomics approach using LC-Orbitrap high resolution mass spectrometry and chemometrics for authentication of beef meats from different origins in Indonesia. Sains Malays. 52:2869–2887. https://doi.org/10.17576/jsm-2023-5210-11

Windarsih, A., Suratno, H. D. Warmiko, A. W. Indrianingsih, A. Rohman, & Y. I. Ulumuddin. 2022. Untargeted metabolomics and proteomics approach using liquid chromatography-Orbitrap high resolution mass spectrometry to detect pork adulteration in Pangasius hypopthalmus meat. Food Chem. 386:132856. hhttps://doi.org/10.1016/j.foodchem.2022.132856

Worley, B. & R. Powers. 2013. Multivariate analysis in metabolomics. Curr. Metabolomics 1:92–107. https://doi.org/10.2174/2213235X11301010092

Zeki, Ö. C., C. C. Eylem, T. Reçber, S. Kır, & E. Nemutlu. 2020. Integration of GC–MS and LC–MS for untargeted metabolomics profiling. J. Pharm. Biomed. Anal. 190:113509. https://doi.org/10.1016/j.jpba.2020.113509

Zhang, T., C. Chen, K. Xie, J. Wang, & Z. Pan. 2021. Current state of metabolomics research in meat quality analysis and authentication. Foods 10:2388. https://doi.org/10.3390/foods10102388

Zia, Q., M. Alawami, N. F. K. Mokhtar, R. M. H. R. Nhari, & I. Hanish. 2020. Current analytical methods for porcine identification in meat and meat products. Food Chem. 324:126664. https://doi.org/10.1016/j.foodchem.2020.126664

Zotte, A. D., E. Gleeson, D. Franco, M. Cullere, & J. M. Lorenzo. 2020. Proximate composition, amino acid profile, and oxidative stability of slow-growing indigenous chickens compared with commercial broiler chickens. Foods 9:546 https://doi.org/10.3390/foods9050546

Authors

A. Windarsih
A. Rohman
abdulkimfar@gmail.com (Primary Contact)
Y. Khasanah
Y. Erwanto
N. K. Abu Bakar
WindarsihA., RohmanA., KhasanahY., ErwantoY., & Abu BakarN. K. (2024). Chemometrics Assisted LC-HRMS Non-Targeted Metabolomics for Discrimination of Beef, Chicken, and Wild Boar Meats. Tropical Animal Science Journal, 47(3), 381-391. https://doi.org/10.5398/tasj.2024.47.3.381

Article Details