Characteristics of Liquid Egg White with Addition of Forest Bee Honey During Cold Storage

K. W. Saputri, Nurliyani, Widodo

Abstract

Eggs were perishable foodstuffs during distribution to consumers. Hence, appropriate egg handling and preservation methods were needed and could be applied to farmers and the egg processing industry. This research aimed to evaluate the effect of adding forest bee honey (Apis dorsata) on the physicochemical and microbiological qualities of liquid egg whites at storage temperature of 4 °C. The treatments consisted of three levels of honey (0%, 5%, and 10%) with storage durations of 0, 1, 2, 3, 4, 5, 6, 7, and 8 weeks. The variables analyzed include physical properties (foam capacity and foam stability), chemical properties (S-ovalbumin and protein profile on SDS-PAGE), and total plate count (TPC). The results revealed that the interaction of storage time and the addition of honey has a significant effect (p<0.05) on foam capacity, foam stability, S-ovalbumin, and TPC. Egg whites with 10% honey had higher foam capacity and foam stability, but lower S-ovalbumin content and the number of microbes after eight weeks compared to egg whites with 0% honey and 5% honey. In conclusion, the addition of 10% forest bee honey could maintain physicochemical qualities and extend the shelf life of liquid egg white during 8 weeks of cold storage.

References

Abeyrathne, E. D. N. S., H. Y. Lee, & D. U. Ahn. 2014. Sequential separation of lysozyme, ovomucin, ovotransferrin and ovalbumin from egg white. Polt. Sci. 93:1001-1009. https://doi.org/10.3382/ps.2013-03403

Akpinar, G. C. & A. Gunenc. 2019. Effects of transportation and storage duration of Japanese quail eggs on hatchability. S. Afr. J. Anim. Sci. 49:253-261. https://doi.org/10.4314/sajas.v49i2.6

Alleoni, A. C. C. & A. J. Antunes. 2004. Albumen foam stability and S-ovalbumin contents in eggs coated with whey protein concentrate. Rev. Bras. Cienc. Avic. 6:105–110. https://doi.org/10.1590/S1516-635X2004000200006

Almasaudi, S. 2021. The antibacterial activities of honey. Saudi J. Biol. Sci. 28:2188-2196. https://doi.org/10.1016/j.sjbs.2020.10.017

Al-Shuhaib, M. B. S., H. O. Hashim, & M. J. Ewadh. 2019. Screening of the whole egg white proteins in variable types of birds. Biotropia 26:1-25. https://doi.org/10.11598/btb.2019.26.2.812

Ayoob, M., A. H. Shah, Z. A. Nizamani, M. F. Ayoob, D. K. Bhuptani, & A. S. Baloch. 2023. Antimicrobial and antioxidative effects of honey marination on beef meat. Pakistan J. Zool. 55:1409-1416. https://dx.doi.org/10.17582/journal.pjz/20211203051239

Badan Standardisasi Nasional. 2008a. SNI 01-3926-2008 tentang Telur Ayam Konsumsi. BSN, Jakarta.

Badan Standardisasi Nasional. 2008b. SNI 2897-2008 tentang Metode Pengujian Cemaran Mikroba dalam Daging, Telur dan Susu serta Hasil Olahannya. BSN, Jakarta.

Campbell, L., V. Rikos, & S. R. Euston. 2003. Modification of functional properties of egg white proteins. Food 6:369-376. https://doi.org/10.1002/food.200390084

Chen, Y., L. Sheng, M. Gouda, & M. Ma. 2019. Studies on foaming and physicochemical properties of egg white during cold storage. Colloids Surface A. 582:123916. 1-9. https://doi.org/10.1016/j.colsurfa.2019.123916

da Silva, P. M., C. Gauche, L. V. Gonzaga, A. C. O. Costa, & R. Fett. 2016. Honey: chemical, composition, stability and authenticity. Food Chem. 309-323. https://doi.org/10.1016/j.foodchem.2015.09.051

Fu, D. D., Q. H. Wang, M. H. Ma, Y. X. Ma, & C. N. Vong. 2019. Prediction and visualization of S-ovalbumin content in egg whites using hyperspectral images. Int. J. Food Prop. 22:1077-1086. https://doi.org/10.1080/10942912.2019.1628775

Gharbi, N., M. Labbafi, & A. Madadlou. 2017. Effect of heat treatment on foaming properties of ostrich (Struthio camelus) egg white proteins. Int. J. Food Prop. 20:3159–3169. https://doi.org/10.1080/10942912.2017.1280676

Gharbi, N. & M. Labbafi. 2019. Influence of treatment-induced modification of egg white proteins on foaming properties. Food Hydrocoll. 90:72-81. https://doi.org/10.1016/j.foodhyd.2018.11.060

Guo, D., Q. Pan, Q. Huan, Y. Yi, H. Wang, & W. Xu. 2022. The quality analysis and deterioration mechanism of liquid egg white during storage. Appl. Sci. 12:1-14. https://doi.org/10.3390/app12052500

Guyot, N., S. Jan, S. Rehalut-Godbert, Y. Nys, M. Gautier, & F. Baron. 2013. Antibacterial Activity of Egg White: Influence of Physico-Chemical Conditions. European Symposium on the Quality of Pultry Meat, Bergamo. Italy.

Huang, Q., N. Qiu, M. H. Ma, Y. G. Jin, H. Yang, F. Geng, & S. H. Sun. 2012. Estimation of egg freshness using S-ovalbumin as an indicator. Poult. Sci. 91:739-743. https://doi.org/10.3382/ps.2011-01639

Jiang, B., J. Na, L. Wang, D. Li, C. Liu, & Z. Feng. 2019. Eco-innovation in reusing food by-products: Separation of ovalbumin from salted egg white using aqueous two-phase system of PEG 1000/(NH4)2SO4. Polymers 2:238. https://doi.org/10.3390/polym11020238

Ji, S., D. U. Ahn, Y. Zhao, K. Li, & X. Huang. 2020. An easy and rapid separation method for five major proteins from egg white: successive extraction and MALDI TOF-MS identification. Food Chem. 315:126207. https://doi.org/10.1016/j.foodchem.2020.126207

Kovacs-Nolan, J. K. N., M. Phillips, & Y. Mine. 2005. Advances in the value of eggs and egg components for human health. J. Agr. Food Chem. https://doi.org/10.1021/jf050964f

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. https://doi.org/10.1038/227680a0

Martinello, M. & F. Mutinelli. 2021. Antioxidant activity in bee products: A review. Antioxidants 10:1-37. https://doi.org/10.3390/antiox10010071

Ministry of Agriculture. 2022. Livestock and Animal Health Statistics. Direktorat Jenderal Peternakan dan Kesehatan Hewan, Jakarta.

Miyamoto, T., N. Takashi, M. Sekine, T. Ogawa, M. Hidaka, H. Homma, & H. Masaki. 2015. Transition of serine residues to the D-form during the conversion of ovalbumin into heat stable S-ovalbumin. J. Pharm. Biomed. Anal. 116:145–149. https://doi.org/10.1016/j.jpba.2015.04.030

Moniruzzaman, M. Md. I. Khalil, S. A. Sulaiman, & S. H. Gan. 2013. Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana, Apis dorsata and Apis mellifera. BMC Complement Altern. Med. 13:1-12. https://doi.org/10.1186/1472-6882-13-43

Moreira, R. F. A., C. A. B. Maria, M. Pietroluongo, & L. C. Trugo. 2010. Chemical changes in the volatile fractions of Brazilian honeys during storage under tropical conditions. Food Chem. 121:697–704. https://doi.org/10.1016/j.foodchem.2010.01.006

Narsimhan, G. & N. Xiang. 2018. Role of proteins on formation, drainage, and stability of liquid food foams. Annu. Rev. Food Sci. Technol. 9:45-63. https://doi.org/10.1146/annurev-food-030216-030009

Necidova, L., S. Bursova, F. Jezek, D. Harustiakova, L. Vorvola, & J. Golian. 2019. Effect of preservatives on the shell-life and sensory characteristics of pasteurized liquid whole egg stored at 4 °C. Poult. Sci. 98:5940-5948. https://doi.org/10.3382/ps/pez378

Nimalaratne, C. & J. Wu. 2015. Hen egg as an antioxidant food commodity: A review. Nutrients 7:8274-8293. https://doi.org/10.3390/nu7105394

Singh, A., D. J. Geveke, D. R., Jones, & E. D. Tilman. 2019. Could acceptable quality angel food cakes be made using pasteurized shell eggs? The effects of mixing factors on functional properties of angel food cakes. Food Sci. Nutr. 7:987-996. https://doi.org/10.1002/fsn3.911

Sun, J. C. Chang, Y. Su, L. Gu, Y. Yang, & J. Li. 2022. Impact of saccharides on the foam properties of egg white: correlation between rheological, interfacial properties and foam properties. Food Hyrocoll. 122:107088. https://doi.org/10.1016/j.foodhyd.2021.107088

Thohari I., F. Jaya, & N. A. R. Ajeng. 2020. The addition of acetic acid on functional properties of duck eggs white. Jurnal Teknologi Hasil Peternakan 1:25−33. https://doi.org/10.24198/jthp.v1i1.23977

Wang, M. P., X. W. Chen, J. Guo, J. Yang, J. M. Wang, & X. Q. Yang. 2019. Stabilization of foam and emulsion by subcritical water-treated soy protein: Effect of aggregation state. Food Hydrocoll. 87:619–628. https://doi.org/10.1016/j.foodhyd.2018.08.047

Wouters, A. G. B., I. Rombouts, E. Fierens, K. Brijs, C. Blecker, J. A. Delcour, & B. S. Murray. 2018. Foaming and air-water interfacial characteristics of solutions containing both gluten hydrolysate and egg white protein. Food Hydrocoll. 77:176–186. https://doi.org/10.1016/j.foodhyd.2017.09.033

Yusrawati, Nahariah, F. N. Yuliati, & H. M. Ali. 2019. Effects Honey on Different Levels of Antioxidant Activity and Chemical of Pasteurized Eggs. 1st International Conference of Animal Science and Technology, Makasar. Indonesia. https://doi.org/10.1088/1755-1315/247/1/012067

Zhan, F., J. Li, M. Youssef, & L. Bin. 2021. Enhancement of foam stability parallel with foam ability of the foam stabilized by sodium caseinate-based complex: Octenyl succinate starch acting a dual role. Food Hydrocoll. 113:106479. https://doi.org/10.1016/j.foodhyd.2020.106479

Zhao, Q., L. Ding, M. Xia, X. Huang, K. Wasobe, A. Handa, & Z. Cai. 2021. Role of lysozyme on liquid egg white foaming properties: Interface behavior, physicochemical characteristics and protein structure. Food Hydrocoll. 120:106876. https://doi.org/10.1016/j.foodhyd.2021.106876

Zhu, J., D. Zhang, X. Zhou, Y. Cui, S. Jiao, & X. Shi. 2021. Development of a pasteurization method based on radio frequency heating to ensure microbiological safety of liquid egg. Food Control 123:1-30. https://doi.org/10.1016/j.foodcont.2019.107035

Zou, S., H. Tao, & Y. Chang. 2022. Characterization of antioxidant activity and analysis of phenolic acids and flavonoids in linden honey. Food Sci. Technol. 42:e76621. https://doi.org/10.1590/fst.76621

Authors

K. W. Saputri
kade.wahyu@gmail.com (Primary Contact)
Nurliyani
Widodo
SaputriK. W., Nurliyani, & Widodo. (2024). Characteristics of Liquid Egg White with Addition of Forest Bee Honey During Cold Storage. Tropical Animal Science Journal, 47(4), 510-518. https://doi.org/10.5398/tasj.2024.47.4.510

Article Details