Nutritive Value, Digestibility, and Gas Production of Pennisetum purpureum Silage Supplemented with Saccharomyces cerevisiae and Lactobacillus plantarum

L. Riyanti, R. Zahera, A. N. Kisworo, R. R. S. Wihansah, G. Febriza

Abstract

The purpose of this study was to evaluate the use of Saccharomyces cerevisiae and Lactobacillus plantarum as silage additives and their combinations on the physico-chemical and microbiological quality of Pennisetum purpureum cv. Mott silage and assess fermentation characteristics, digestibility, and in vitro gas production. The experiment used a completely randomized design with 4 treatments and 5 replications. The treatments are: T0= dwarf elephant grass silage + 3% molasses, T1= T0 + S. cerevisiae, T2= T0 + L. plantarum, and T3= T0 + S. cerevisiae + L. plantarum. Variables measured were organoleptic, physical, microbial, nutrient composition, in vitro fermentation characteristics and nutrient digestibility, as well as total gas and methane productions. The result showed that all silages had good physical quality, low pH (<3.8) and NH3 content, and high fleigh point. Inoculants decreased the percentage of dry matter, crude protein, ether extract (p<0.05), increased crude fiber, and decreased the composition of nitrogen-free extract and non-fiber carbohydrate (p<0.05) but it was able to increase Ca and P. Total gas production of T0 was the highest among treatments, while the T3 had the lowest total gas and methane productions (p<0.05). The supplementation of S. cerevisiae and L. plantarum as a silage improved organoleptic, physical, and microbiological qualities. Although the nutrient composition did not increase significantly, the combination of 2 (two) inoculants was able to improve fermentation activity in the rumen, increase total volatile fatty acid (VFA), dry matter and organic matter digestibility, reduce total gas production and the ratio of methane gas production to VFA.

References

Amaral, R. C., B. F. Carvalho, D. M. Costa, M. J. F. Morenz, R. F. Schwan, C. L. S. Avila. 2020. Novel lactic acid bacteria strain enhance the conservation of elephant grass silage cv. BRS Capiacu. Anim. Feed Sci. Technol. 264:114472. https://doi.org/10.1016/j.anifeedsci.2020.114472
AOAC. 2005. Official Methods of Analysis of AOAC International. 18th ed. Assoc. Off. Anal. Chem., Arlington.
Borreani, G., E. Tabacco, R. J. Schmidt, B. J. Holmes, & R. E. Muck. 2018. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 101:3952–3979. https://doi.org/10.3168/jds.2017-13837
Elghandour, M. M. Y., J. C. V. Chagoyan, A. Z. M. Salem, A. E. Kholif, J. S. M. Castaneda, L. M. Camacho, & M. A. Cerrillo-Soto. 2014. Effect of Saccharomyces cerevisiae at direct addition or pre-incubation on in vitro gas production kinetics and degradability of four fibrous feed. Ital. J. Anim Sci. 13:3075. https://doi.org/10.4081/ijas.2014.3075
General Laboratory Procedure. 1966. Department of Dairy Science. University of Wisconsin, Madison.
Guan, H., Q. Ran, Y. Yanhong, X. Wang, D. Li, Y. Cai, & X. Zhang. 2020. The microbiome and metabolome of Napier grass silage prepared with screened lactic acid bacteria during ensiling and aerobic exposure. Anim. Feed Sci. Technol. 269: 114673. https://doi.org/10.1016/j.anifeedsci.2020.114673
Gul, S. 2023. The impact of wheat bran and molasses addition to caramba mix silage on feed value and in vitro organic matter digestibility. J. King Saud Univ. Sci. 35:102400. https://doi.org/10.1016/j.jksus.2022.102400
Hapsari, S. S., Suryahadi, & H. A. Sukria. 2016. Improvement on the quality of napier grass silage through inoculation of Lactobacillus plantarum and formic acid. Med. Pet. 39:125-133. https://doi.org/10.5398/medpet.2016.39.2.125
Khota, W., S. Pholsen, D. Higgs, & Y. Cai. 2016. Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant. J. Dairy Sci. 99:9768-9781. https://doi.org/10.3168/jds.2016-11180
Kisworo, A. N., A. Agus, Kustantinah, & B. Suwignyo. 2017. Physicochemical characteristics, in vitro fermentation indicators, gas production kinetics, and degradability of solid herbal waste as alternative feed source for ruminants. Med. Pet. 40:101–110. https://doi.org/10.5398/medpet.2017.40.2.101
Kondo, M., Y. Hirano, N. Ikai, K. Kita, A. Jayanegara, & H. Yokota. 2014. Assessment of anti-nutritive activity of tannins in tea by-products based on in vitro rumen fermentation. Asian-Australas. J. Anim. Sci. 27:1571–1576. https://doi.org/10.5713/ajas.2014.14204
Kondo, M., M. Yoshida, M. Loresco, R. M. Lapitan, J. R. V. Herrera, A. N. D. Barrio, Y. Uyeno, H. Matsui, & T. Fujihara. 2015. Nutrient contents and in vitro ruminal fermentation of tropical grasses harvested in wet season in the Philippines. Adv. Anim. Vet. Sci. 3:694–699.
https://doi.org/10.14737/journal.aavs/2015/3.12.694.699
Kurniawan, W., Hardianto, A. Ramdani, A. Bain, T. Bachtiar, & T. Wahyono. 2022. Influences of manure and biochar on biomass yield and nutrient value pf Pennisetum purpureum cv Mott grown on post-nickel-mining soil. J. Anim. Plant. Sci. 32:1306-1316. https://doi.org/10.36899/JAPS.2022.5.0537
Li, M., X. Zi, H. Zhou, G. Hou, & Y. Cai. 2014. Effect of sucrose, glucose, molasses and cellulase on fermentation quality in vitro gas production of king grass silage. Anim. Feed. Sci. Technol. 197:206-212. https://doi.org/10.1016/j.anifeedsci.2014.06.016
Lyons, S. E., Q. M. Ketterings, G. S. Godwin, D. J. Cherney, J. H. Cherney, M. E. V. Amburgh, J. J. Meisinger, & T. F. Kilcer. 2019. Optimal harvest timing for brown midrib forage sorghum yield, nutritive value, and ration performance. J. Dairy Sci. 102:7134–7149. https://doi.org/10.3168/jds.2019-16516
Moselhy, M. A., J. P. Borba, & A. E. Borba. 2015. Improving the nutritive value, in vitro digestibility and aerobic stability of Hedycum gardnerianum silage through application of additive incubation time. Anim. Feed Sci. Technol. 206:8-18. https://doi.org/10.1016/j.anifeedsci.2015.05.001
Muck, R. E., E. M. G. Nadeau, T. A. McAliister, F. E. Contreras-Govea, S. M. C. Santos, & L. Kung Jr. 2018. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 101:3980-4000. https://doi.org/10.3168/jds.2017-13839
Mugabe, W., X. Yuan, J. Li, Z. Dong, & T. Shao. 2019. Effect of hexanoic acid, Lactobacillus plantarum and their combination on the fermentation characteristic of Napier grass. Anim. Feed Sci. Technol. 253:135-140. https://doi.org/10.1016/j.anifeedsci.2019.05.005
Okoye, C. O., Y. Wang, L. Gao, Y. Wu, X. Li, J. Sun, & J. Jiang. 2023. The performance of lactic bacteria in silage production: A review of modern biotechnology for silage improvement. Microbiol. Res. 266:127212. https://doi.org/10.1016/j.micres.2022.127212
Ørskov, E. R. & I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499–503. https://doi.org/10.1017/S0021859600063048
Riyanti, L., Suryahadi, & D. Evvyernie. 2016. In vitro fermentation characteristics and rumen microbial population of diet supplemented with Saccharomyces cerevisiae and rumen microbe probiotics. Med. Pet. 39:40–45. https://doi.org/10.5398/medpet.2016.39.1.40
Silva, E. B., X. Liu, C. Mellinger, T. F. Gressley, J. D. Stypinski, N. A. Moyer, & L. Kung Jr. 2021. Effect of dry matter content on the microbial community and on the effectiveness of a microbial inoculant to improve the aerobic stability of corn silage. J. Dairy Sci. 105:5024–5043. https://doi.org/10.3168/jds.2021-21515
Sofyan A., Y. Widyastuti, R. Utomo, & L. M. Yusiati. 2017. Improving physicochemical characteristic and palatability of King grass (Pennisetum hybrid) silage by inoculation of Lactobacillus plantarum-Saccharomyces cerevisiae consortia and addition of rice bran. Buletin Peternakan 41:61-71. https://doi.org/10.21059/buletinpeternak.v41i1.12980
Steel, R. G. D. & J. H. Torrie. 1980. Principles and Procedures of Statistics. A Biometrical Approach 2nd ed., McGraw-Hill Book Company, New York.
Sugoro, I., I. K. G. Wiryawan, D. A. Astuti, & Wahyono T. 2015. Gas production and rumen fermentation characteristics of buffalo diets containing by-product from some sorghum varieties. J. Anim. Vet. Sci. 20:242–249. https://doi.org/10.14334/jitv.v20i4.1241
Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, & J. France. 1994 A simple gas production methode using a pressure transduser to determine the fermentation kinetics of ruminants feeds. Anim. Feed Sci. Technol. 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6
Tilley, J. M. A. & R. A. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18:104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
Vyas, D., A. Uwizeye, R. Mohammed, W. Z. Yang, N. D. Walker, & K.A. Beauchemin. 2014. The effect of active dried and killed dried yeast on subacute ruminal acidosis, rumi- nal fermentation, and nutrient digestibility in beef heifers. J. Anim. Sci. 92:724-732. https://doi.org/10.2527/jas.2013-7072
Wahyono, T., S. N. W. Hardani, & I. Sugoro. 2018. Low irradiation dose for sorghum seed sterilization: hydroponic fodder system and in vitro study. Buletin Peternakan 42:215–221. https://doi.org/10.21059/buletinpeternak.v42i3.30888
Wahyono, T., I. Sugoro, A. Jayanegara, I. K. G. Wiryawan, & D. A. Astuti. 2019. Nutrient profile and in vitro degradability of new promising mutant line shorgum as forage in Indonesia. Adv. Anim. Vet. Sci. 7:810-818. https://doi.org/10.17582/journal.aavs/2019/7.9.810.818
Wu, P., L. Li, J. Jiang, Y. Sun, Z. Yuan, X. Feng, & Y. Guo. 2020. Effect of fermentative and non-fermentative additives on silage quality and anaerobic digestion performance on Pennisetum purpureum. Bioresources Technol. 297:122425. https://doi.org/10.1016/j.biortech.2019.122425
Zhong, R., Y. Fang, H. Sun, M. Wang, & D. Zhou. 2016. Rumen methane output and fermentation characteristics of gramineous forage and leguminous forage at differing harvest dates determined using an in vitro gas production technique. J. Integr. Agric. 15:414–423. https://doi.org/10.1016/S2095-3119(15)61036-X

Authors

L. Riyanti
riyantililis23@gmail.com (Primary Contact)
R. Zahera
A. N. Kisworo
R. R. S. Wihansah
G. Febriza
RiyantiL., ZaheraR., KisworoA. N., WihansahR. R. S., & FebrizaG. (2024). Nutritive Value, Digestibility, and Gas Production of Pennisetum purpureum Silage Supplemented with Saccharomyces cerevisiae and Lactobacillus plantarum. Tropical Animal Science Journal, 47(3), 312-320. https://doi.org/10.5398/tasj.2024.47.3.312

Article Details