Effects of Replacing Dietary Antibiotic Supplementation with Chitosan Levels on Rumen Metabolism and Nitrogen Use in Finishing Steers Fed Forage-Free Diets

T. I. S. Silva, R. H. T. B. de Goes, N. R. B. Cônsolo, J. R. Gandra, M. P. Osmari, C. C. Silva, L. E. F. Oliveira, T. M. Souza, L. C. G. S. Barbosa, D. G. Anschau, G. K. R. Silva, L. B. Lopes, J. W. S. Fernandes

Abstract

The aim of this study was to evaluate the effects of replacing antibiotics with increasing doses of chitosan (CHI) on nutrient intake and digestibility, corn grain excretion, ruminal fermentation, nitrogen metabolism, and feeding behavior in finishing steers fed forage-free diets. Five ruminally cannulated crossbred steers were assigned to a 5 x 5 Latin square experimental design and given the following diets: C0= basal diet with no additives, ANT= basal diet with inclusion of virginiamycin 30 mg/kg DM, C375= basal diet with inclusion of chitosan 375 mg/kg DM, C750= basal diet with inclusion of chitosan 750 mg/kg DM, and C1500= basal diet with inclusion of chitosan 1500 mg/kg DM. Supplementation with CHI did not affect ruminal pH and ammonia nitrogen (N-NH3) concentration. Chitosan quadratically affected corn grain excretion and molar proportion of ruminal butyrate, with greater values for C750. Animals fed C375 showed greater dry matter intake and neutral detergent fiber intake; and greater digestibility of DM, starch, and NDF. Animals fed C750 and C1500 diets presented greater absorbed N compared to ANT. Animals fed ANT, C750, and C1500 spent more time eating and chewing than animals fed CON. More specifically, the dose of 375 mg/kg DM of diet was very promising for steers fed free-forage diet due to its ability to improve nutrient digestibility, with only slight changes in N metabolism.

References

Ametaj, B. N., K. M. Koenig, S. M. Dunn, W. Z. Yang, Q. Zebeli, & K. A. Beauchemin. 2009. Backgrounding and finishing diets are associated with inflammatory responses in feedlot steers. J. Anim. Sci. 87:1314–1320. https://doi.org/10.2527/jas.2008-1196
AOAC. 2020. Official Methods of Analysis, 15th ed. 2020. Association of Official Analytical Chemists, Arlington, VA.
Araújo, A. P. C., B. C. Venturelli, M. C. B. Santos, R. Gardinal, N. R. B. Cônsolo, G. D. Calomeni, J. E. Freitas, R. V. Barletta, J. R. Gandra, P. G. Paiva, & F. P. Rennó. 2015. Chitosan affects total nutrient digestion and ruminal fermentation in Nellore steers. Anim. Feed Sci. Technol. 206:114–118. https://doi.org/10.1016/j.anifeedsci.2015.05.016
Chen, X. B. & M. J. Gomes. 1992. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives -an Overview of the Technical Details. 20. Kluwer Academic Publishers, Austria.
Cheng, G., H. Hao, S. Xie, X. Wang, M. Dai, L. Huang, & Z. Yuan. 2014. Antibiotic alternatives: The substitution of antibiotics in animal husbandry ? Front. Microbiol. 5:217. https://doi.org/10.3389/fmicb.2014.00217
Contadini, M. A., F. A. Ferreira, R. R. S. Corte, D. S. Antonelo, J. F. M. Gómez, & S. da L. e Silva. 2017. Roughage levels impact on performance and carcass traits of finishing Nellore cattle fed whole corn grain diets. Trop. Anim. Health Prod. 49:1709-1713. https://doi.org/10.1007/s11250-017-1381-x
Del Valle, T. A., P. G. de Paiva, E. F. de Jesus, G. F. de Almeida, F. Zanferari, A. G. B. V. B. Costa, I. C. S. Bueno, & F. P. Rennó. 2017. Dietary chitosan improves nitrogen use and feed conversion in diets for mid-lactation dairy cows. Livest. Sci. 201:22–29. https://doi.org/10.1016/j.livsci.2017.04.003
Dias, A. O. C., R. H. T. B. Goes, J. R. Gandra, C. S. Takiya, A. F. Branco, A. G. Jacaúna, R. T. Oliveira, C. J. S. Souza, & M. S. M. Vaz. 2017. Increasing doses of chitosan to grazing beef steers: Nutrient intake and digestibility, ruminal fermentation, and nitrogen utilization. Anim. Feed Sci. Technol. 225:73–80. https://doi.org/10.1016/j.anifeedsci.2017.01.015
Emmanuel, D. G. V., S. M. Dunn, & B. N. Ametaj. 2008. Feeding high proportions of barley grain stimulates an inflammatory response in dairy cows. J. Dairy Sci. 91:606–614. https://doi.org/10.3168/jds.2007-0256
Ferrari, V. B., N. R. B. Cônsolo, R. T. Sousa, J. M. Souza, M. H. A. Santana, & L. F. P. Silva. 2019. Effects of energy sources and inclusion levels of concentrate in sugarcane silage-based diets of finishing Nellore young bulls: Feeding behaviour, performance and blood parameters. J. Agric. Sci. 157:350-356. https://doi.org/10.1017/S0021859619000583
Ferri, M., E. Ranucci, P. Romagnoli, & V. Giaccone. 2017. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 57:2857–2876. https://doi.org/10.1080/10408398.2015.1077192
Gandra, J. R., C. S. Takiya, E. R. de Oliveira, P. G. de Paiva, R. H. de T. e B. Goes, E. R. de S. Gandra, & H. M. C. Araki. 2016. Nutrient digestion, microbial protein synthesis, and blood metabolites of Jersey heifers fed chitosan and whole raw soybeans. Revista Brasileira Zootecnia 45:130–137. https://doi.org/10.1590/S1806-92902016000300007
Garcia-Rodriguez, A., J. Arranz, N. Mandaluniz, I. B. de Heredia, R. Ruiz, & I. Goiri. 2015. Production performance and plasma metabolites of dairy ewes in early lactation as affected by chitosan. Span. J. Agric. Res. 13:e06SC04. https://doi.org/10.5424/sjar/2015134-7683
Goiri, I., L. M. Oregui, & A. Garcia-Rodriguez. 2010. Use of chitosans to modulate ruminal fermentation of a 50:50 forage-to-concentrate diet in sheep. J. Anim. Sci. 88:749–755. https://doi.org/10.2527/jas.2009-2377
González, L. A., X. Manteca, S. Calsamiglia, K. S. Schwartzkopf-Genswein, & A. Ferret. 2012. Ruminal acidosis in feedlot cattle: Interplay between feed ingredients, rumen function and feeding behavior (a review). Anim. Feed Sci. Technol. 172:66–79. https://doi.org/10.1016/j.anifeedsci.2011.12.009
Harahap, R. P., S. Suharti, M. Ridla, E. B. Laconi, N. Nahrowi, A. Irawan, M. Kondo, T. Obitsu, & A. Jayanegara. 2022. Meta‐analysis of dietary chitosan effects on performance nutrient utilization. Anim. Sci. J. 93:e13676. https://doi.org/10.1111/asj.13676
Haraki, H. M. C., J. R. Gandra, E. R. Oliveira, C. S. Takiya, R. H. T. B. Goes, A. M. A. Gabriel, G. C. G. Rodrigues, E. R. S. Gandra, T. L. Pereira, J. Damiani, & J. D. O. Batisa. 2018. Effects of chitosan and whole raw soybeans on feeding behavior and heat losses of Jersey heifers. Iran. J. Appl. Anim. Sci. 8:397–405.
Huzzey, J. M., J. A. Fregonesi, M. A. G. von Keyserlingk, & D. M. Weary. 2013. Sampling behavior of dairy cattle: Effects of variation in dietary energy density on behavior at the feed bunk. J. Dairy Sci. 96:247–256. https://doi.org/10.3168/jds.2012-5796
Jiménez-Ocampo, R., S. Valencia-Salazar, C. E. Pinzón-Díaz, E. Herrera-Torres, C. F. Aguilar-Pérez, J. Arango, & J. C. Ku-Vera. 2019. The role of chitosan as a possible agent for enteric methane mitigation in ruminants. Animals 9:942. https://doi.org/10.3390/ani9110942
Kirwan, S. F., K. M. Pierce, E. Serra, M. McDonald, G. Rajauria, & T. M. Boland. 2021. Effect of chitosan inclusion and dietary crude protein level on nutrient intake and digestibility, ruminal fermentation, and n excretion in beef heifers offered a grass silage based diet. Animals 11:771. https://doi.org/10.3390/ani11030771
Mertens, D. R. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beaker or crucibles: collaborative study. Journal of AOAC International 85:1217-1240. https://doi.org/10.1093/jaoac/85.6.1217
Mingoti, R. D., J. E. Freitas Jr, J. R. Gandra, R. Gardinal, G. D. Calomeni, R. V. Barletta, T. H. A. Vendramini, P. G. Paiva, & F. P. Rennó. 2016. Dose response of chitosan on nutrient digestibility, blood metabolites and lactation performance in holstein dairy cows. Livest. Sci. 187:35–39. https://doi.org/10.1016/j.livsci.2016.02.008
Myers, W. D., P. A. Ludden, V. Nayigihugu, & B. W. Hess. 2004. Technical note: A procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci. 82:179–183. https://doi.org/10.2527/2004.821179x
Nagaraja, T. G. & E. C. Titgemeyer. 2007. Ruminal acidosis in beef cattle: The current microbiological and nutritional outlook. J. Dairy Sci. 90:E17–E38. https://doi.org/10.3168/jds.2006-478
Owens, F. & S. Soderlund. 2006. Ruminal and Postruminal Starch Digestion by Cattle, in: Cattle Grain Processing Symposium. pp. 116–128. https://doi.org/10.1017/CBO9781107415324.004
Owens, F. N., D. S. Secrist, W. J. Hill, & D. R. Gill. 1998. Acidosis in cattle: A Review. J. Anim. Sci. 76:275–286. https://doi.org/10.2527/1998.761275x
Paiva, P. G. de., E. F. de Jesus, T. A. Del Valle, G. F. de Almeida, A. G. B. V. B. Costa, C. E. C. Consentini, F. Zanferari, C. S. Takiya, I. C. da S. Bueno, & F. P. Renno. 2016. Effects of chitosan on ruminal fermentation, nutrient digestibility, and milk yield and composition of dairy cows. Anim. Prod. Sci. 57:301-307. https://doi.org/10.1071/AN15329
Paula, R. M. de., C. A. Zotti, L. F. D’Abreu, N. R. B. Cônsolo, P. R. Leme, S. da Luz e Silva, & A. S. Netto. 2019. Roughage-free finishing diet based on whole corn grain and a mixture of additives for Nellore heifers. Revista Brasileira Zootecnia 48:e20180004. https://doi.org/10.1590/rbz4820180004
Pereira, F. M., G. G. P. Carvalho, T. S. Magalhães, J. E. F. Júnior, L. F. B. Pinto, G. B. Mourao, A. J. V. Pires, C. E. Eiras, D. Nobais-Eiras, J. A. G. Azevêdo, & A. E. Filho. 2018. Effect of chitosan on production performance of feedlot lambs. J. Agric. Sci. 156:1138–1144. https://doi.org/10.1017/S0021859619000017
Rennó, F. P., N. R. B. Cônsolo, R. V. Barletta, B. Ventureli, R. Gardinal, C. S. Takiya, J. R. Gandra, & A. S. C. Pereira. 2015. Grão de soja cru e inteiro na alimentação de bovinos: Excreção de grão de soja nas fezes. Archivos Zootecnia 64:331–338. https://doi.org/10.21071/az.v64i248.417
Rivaroli, D. C., A. Guerrero, M. V. Valero, F. Zawadzki, C. E. Eiras, M. del M. Campo, C. Sañudo, A. M. Jorge, & I. N. do Prado. 2016. Effect of essential oils on meat and fat qualities of crossbred young bulls fi nished in feedlots. Meat Sci. 121:278–284. https://doi.org/10.1016/j.meatsci.2016.06.017
Seankamsorn, A., A. Cherdthong, S. So, & M. Wanapat. 2021. Influence of chitosan sources on intake, digestibility, rumen fermentation, and milk production in tropical lactating dairy cows. Trop. Anim. Health Prod. 53:241. https://doi.org/10.1007/s11250-021-02697-0
Seankamsorn, A., A. Cherdthong, & M. Wanapat. 2020. Combining crude glycerin with chitosan can manipulate in vitro ruminal efficiency and inhibit methane synthesis. Animals 10:37. https://doi.org/10.3390/ani10010037
Senel, S. & S. J. McClure. 2004. Potential applications of chitosan in veterinary medicine Sevda S. Adv. Drug Deliv. Rev. 56:1467–1480. https://doi.org/10.1016/j.addr.2004.02.007
Silvestre, A. M. & D. D. Millen. 2021. The 2019 Brazilian survey on nutritional practices provided by feedlot cattle consulting nutritionists. Revista Brasileira Zootecnia 50:e20200189. https://doi.org/10.37496/rbz5020200189
Tiseo, K., L. Huber, M. Gilbert, T. P. Robinson, & T. P. Van Boeckel. 2020. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 9:918. https://doi.org/10.3390/antibiotics9120918
Van Boeckel, T. P., C. Brower, M. Gilbert, B. T. Grenfell, S. A. Levin, T. P. Robinson, A. Teillant, & R. Laxminarayan. 2015. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci 112:5649–5654. https://doi.org/10.1073/pnas.1503141112
Van Soest, P. J., J. B. Robertson, & B. A. Lewis. 1991. Methods of dietary fiber, neutral detergent fiber, and nonstarch polysaccha- rides in relation to animal nutrition. J. Dairy Sci. 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Vendramini, T. H. A., C. S. Takiya, T. H. Silva, F. Zanferari, M. F. Rentas, J. C. Bertoni, C. E. C. Consentini, R. Gardinal, T. S. Acedo, & F. P. Rennó. 2016. Effects of a blend of essentials oils, chitosan or monensin on nutrient intake and digestibility of lactating dairy cows. Anim. Feed Sci. Technol. 214:12-21. https://doi.org/10.1016/j.anifeedsci.2016.01.015

Authors

T. I. S. Silva
R. H. T. B. de Goes
rafaelgoes@ufgd.edu.br (Primary Contact)
N. R. B. Cônsolo
J. R. Gandra
M. P. Osmari
C. C. Silva
L. E. F. Oliveira
T. M. Souza
L. C. G. S. Barbosa
D. G. Anschau
G. K. R. Silva
L. B. Lopes
J. W. S. Fernandes
SilvaT. I. S., de GoesR. H. T. B., CônsoloN. R. B., GandraJ. R., OsmariM. P., SilvaC. C., OliveiraL. E. F., SouzaT. M., BarbosaL. C. G. S., AnschauD. G., SilvaG. K. R., LopesL. B., & FernandesJ. W. S. (2024). Effects of Replacing Dietary Antibiotic Supplementation with Chitosan Levels on Rumen Metabolism and Nitrogen Use in Finishing Steers Fed Forage-Free Diets. Tropical Animal Science Journal, 47(2), 225-234. https://doi.org/10.5398/tasj.2024.47.2.225

Article Details