Hematological and Performance Variables of Male Broiler Chickens Fed with Moringa oleifera Extract and Probiotic in Drinking Water
Abstract
Moringa oleifera is a potential plant that can be used to improve immunity, the gut health of broiler chickens, and reduce the number of pathogens in the intestine. Probiotics are non-pathogenic microbes that can balance the microflora in the digestive tract and improve poultry production performance. The objective of this study was to demonstrate the impact of adding probiotic Lactobacillus sp. and M. oleifera extract to broiler feed. In this study, a factorial, completely randomized design was used. This research used 900 animals, which were divided into two factors: the first factor was the dose of M. oleifera (0%, 1%, and 2%) and the second factor was the dose of probiotics (0%, 1 %, and 2%). The treatment was 9 (3 x 3 factorial design), with each consisting of 10 replications and each replication consisting of 10 chickens. M. oleifera extract and probiotics were supplemented in drinking water during the 5-week experimental period. Ad libitum supplies of food and drink were provided. The results revealed that there was an interaction (p<0.05) between the doses of M. oleifera extract and probiotic on leucocytes, monocytes, granulocytes, thrombocytes, and hematocrit when M. oleifera extract and probiotics were added. There was no interaction between the doses of M. oleifera extract and probiotics on the levels of lymphocytes, hemoglobin, and erythrocytes, but all blood profile values were within the normal range. The feed intake, feed conversion ratio, and daily body weight gain showed significant differences (p<0.05) that increased between treatments. It could be concluded that using M. oleifera extract and Lactobacillus sp probiotics as feed additives did not alter the normal blood profile values and could increase the performance of male broiler chickens and income over feed cost (IOFC).
References
Abuajah, C. I., A. C. Ogbonna, & C. M. Osuji. 2015. Functional components and medicinal properties of food: A review. J. Food Sci. Technol. 52:2522–2529. https://doi.org/10.1007/s13197-014-1396-5
Afsharmanesh, M., B. Sadaghi, & F. G. Silversides. 2013. Influence of supplementation of prebiotic, probiotic, and antibiotic to wet-fed wheat-based diets on growth, ileal nutrient digestibility, blood parameters, and gastrointestinal characteristics of broiler chickens. Comp. Clin. Path. 22:245–251. https://doi.org/10.1007/s00580-011-1393-2
Agustono, B., W. P. Lokapirnasari, M. N. Yunita, R. N. Kinanti, A.E. Cesa, & S. Windria. 2022. Efficacy of dietary supplementary probiotics as substitutes for antibiotic growth promoters during the starter period on growth performances, carcass traits, and immune organs of male layer chicken. Vet. World 15:324–330. https://doi.org/10.14202/vetworld.2022.324-330
Al-Ali, S. A., S. K. Al-Taee, & H. B. Al-Sabaawy. 2023. Effect of antibiotic substitution with Saccharomyces cerevisiae and probiotic on hematic parameters and growth performance of broilers. Iraqi J. Vet. Sci. 37:667–673. https://doi.org/10.33899/ijvs.2023.137187.2648
Al-Aqaby, A. R., A. A. Glaskovich, & P. A. Kracochko. 2021. Effectiveness of using probiotic Batcinel-K® and CEVAC SET-K® vaccine on some blood parameters in chickens. Iraqi J. Vet. Sci. 35:611–616. https://doi.org/10.33899/ijvs.2020.127018.1439
Al-Otaibi, A. M., M. E. Abd El-Hack, S. M. Dmour, N. Alsowayeh, A. F. Khafaga, E. A. Ashour, M. A. Nour-Eldeen, & S. Świątkiewicz. 2023. A narrative review on the beneficial impacts of probiotics on poultry: An updated knowledge. Annals Animal Science 23:405–418. https://doi.org/10.2478/aoas-2023-0001
Alkhalf, A., M. Alhaj, & I. Al-Homidan. 2010. Influence of probiotic supplementation on blood parameters and growth performance in broiler chickens. Saudi J. Biol. Sci. 17:219–225. https://doi.org/10.1016/j.sjbs.2010.04.005
Amaglo, N. K., R. N. Bennett, R. B. Curto, E. A. Rosa, V. L. Turco, A. Giuffrida, A. L. Curto, F. Crea, & G. M. Timpo. 2010. Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chem. 122:1047–1054. https://doi.org/10.1016/j.foodchem.2010.03.073
Andriani, A. D., W. P. Lokapirnasari, B. Karimah, S. Hidanah, & M. A. Al-Arif. 2020. Potency of probiotic on broiler growth performance and economics analysis. Indian J. Anim. Sci. 90:1140–1145. https://doi.org/10.56093/ijans.v90i8.109294
Arumdani, D. F., W. P. Lokapirnasari, S. Sarudji, M. Lamid, S. Chusniati, & I. S. Hamid. 2023. The potential of Moringa oleifera extract as a phytobiotic candidate for the growth of Lactobacillus fermentum bacteria by in vitro. In IOP Conf. Ser. Earth Environ. Sci. 1273:012077. https://doi.org/10.1088/1755-1315/1273/1/012077
Asghari, G., A. Palizban, & B. Bakhshaei. 2015. Quantitative analysis of the nutritional components in leaves and seeds of the Persian Moringa peregrina (Forssk.) Fiori. Pharmacognosy Res. 7:242–248. https://doi.org/10.4103/0974-8490.157968
Cao, G. T., X. F. Zeng, A. G. Chen, L. Zhou, L. Zhang, Y. P. Xiao, & C. M. Yang. 2013. Effects of a probiotic, Enterococcus faecium, on growth performance, intestinal morphology, immune response, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Poult. Sci. 92:2949–2955. https://doi.org/10.3382/ps.2013-03366
Caicedo-Lopez, L. H., I. Luzardo-Ocampo, M. L. Cuellar-Nuñez, R. Campos-Vega, S. Mendoza, & G. Loarca-Piña. 2019. Effect of the in vitro gastrointestinal digestion on free-phenolic compounds and mono/oligosaccharides from Moringa oleifera leaves: Bioaccessibility, intestinal permeability and antioxidant capacity. Food Res. Int. 120:631–642. https://doi.org/10.1016/j.foodres.2018.11.017
Chang, L., Y. Ding, Y. Wang, Z. Song, F. Li, X. He, & H. Zhang. 2022. Effects of different oligosaccharides on growth performance and intestinal function in broilers. Front. Vet. Sci. 9:852545. https://doi.org/10.3389/fvets.2022.852545
Charde, R. M., M. S. Charde, S. V. Fulzele, P. M. Satturwar, A. V. Kasture, & S. B. Joshi. 2011. Evaluation of ethanolic extract of Moringa Oleifera for wound healing, anti-inflammatory and antioxidant activities on rats. Res. J. Pharm. Technol. 4:254–258.
Chen, W. L., J. B. Liang, M. F. Jahromi, N. Abdullah, H. Y. Wan, & V. Tufarelli. 2015. Enzyme treatment enhances release of prebiotic oligosaccharides from palm kernel expeller. BioRes 10:196–209. https://doi.org/10.15376/biores.10.1.196-209
Chen, X., M. Ishfaq, & J. Wang. 2022. Effects of Lactobacillus salivarius supplementation on the growth performance, liver function, meat quality, immune responses and Salmonella Pullorum infection resistance of broilers challenged with Aflatoxin B1. Poult. Sci. 101:101651. https://doi.org/10.1016/j.psj.2021.101651
Cohen, E., M. Kramer, T. Shochat, E. Goldberg, & I. Krause. 2017. Relationship between hematocrit levels and intraocular pressure in men and women: A population-based cross-sectional study. Medicine 96:e8290. https://doi.org/10.1097/MD.0000000000008290
Coppin, J. P., Y. Xu, H. Chen, M. H. Pan, C. T. Ho, R. Juliani, J. E. Simon, & Q. Wu. 2013. Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. J. Funct. Foods 5:1892–1899. https://doi.org/10.1016/j.jff.2013.09.010
Das, O., S. S. Patil, H. H. Savsani, R. J. Padodara, D. D. Garg, S. Marandi, & N. Barad. 2016. Effect of dietary prebiotics, probiotics and synbiotics as feed additives on blood profile and broiler performance. International Journal Agro-Veterinary Medical Sciences 5:3546–3552.
Dixon, A., K. Robertson, A. Yung, M. Que, H. Randall, D. Wellalagodage, T. Cox, D. Robertson, C. Chi, & J. Sun. 2020. Efficacy of probiotics in patients of cardiovascular disease risk: A systematic review and meta-analysis. Curr. Hypertens. Rep. 22:74. https://doi.org/10.1007/s11906-020-01080-y
Fesseha, H., T. Demlie, M. Mathewos, & E. Eshetu. 2021. Effect of Lactobacillus species probiotics on growth performance of dual-purpose chicken. Vet. Med. (Auckl). 12:75–83. https://doi.org/10.2147/VMRR.S300881
Gyawali, I., Y. Zeng, J. Zhou, J. Li, T. Wu, G. Shu, Q. Jiang, & C. Zhu. 2022. Effect of novel Lactobacillus paracaesi microcapsule on growth performance, gut health and microbiome community of broiler chickens. Poult. Sci. 101:101912. https://doi.org/10.1016/j.psj.2022.101912
Gopalakrishnan, L., K. Doriya, & D. S. Kumar. 2016. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness. 5:49–56. https://doi.org/10.1016/j.fshw.2016.04.001
Hadieva, G., M. Lutfullin, D. Pudova, Y. Akosah, E. Shagimardanova, N. Gogoleva, M. Sharipova, & A. Mardanova. 2021. Supplementation of Bacillus subtilis GM5 enhances broiler body weight gain and modulates cecal microbiota. 3 Biotech 11:126. https://doi.org/10.1007/s13205-020-02634-2
Hermann, W., L. Risch, C. Grebhardt, U. E. Nydegger, B. Sakem, M. Imperiali, H. Renz, & M. Risch. 2020. Reference intervals for platelet counts in the elderly: Results from the prospective SENIORLAB study. J. Clin. Med. 9:2856. https://doi.org/10.3390/jcm9092856
Hidayat, M. N., R. Malaka, L. Agustina, & W. Pakiding. 2020, April. Effect of probiotic Lactobacillus paracasei on hematology and relative weight of lymphoid organs of broiler. IOP Conf. Ser. Earth Environ. Sci. 492:012127. https://doi.org/10.1088/1755-1315/492/1/012127
Islam, Z., S. M. Islam, F. Hossen, K. Mahtab-ul-Islam, M. R. Hasan, & R. Karim. 2021. Moringa oleifera is a prominent source of nutrients with potential health benefits. Int. J. Food Sci. 2021:6627265. https://doi.org/10.1155/2021/6627265
Jäger, R., M. Purpura, S. Farmer, H. A. Cash, & D. Keller. 2018. Probiotic Bacillus coagulans GBI-30, 6086 improves protein absorption and utilization. Probiotics Antimicrob. Proteins 10:611–615. https://doi.org/10.1007/s12602-017-9354-y
Kamruzzaman, S. M., S. M. Kabir, M. M. Rahman, M. W. Islam, & M. A. Reza. 2005. Effect of probiotics and antibiotic supplementation on body weight and haemato-biochemical parameters in broilers. Bangladesh Journal Veterinary Medicine 3:100–104. https://doi.org/10.3329/bjvm.v3i2.11303
Karwanti, N. W., D. F. Arumdani, A. B. Yulianto, T. D. Marbun, A. Sherasiya, M. A. Al Arif, M. Lamid, & W. P. Lokapirnasari. 2023. Efficacy of Moringa oleifera Lam. extracts and Pediococcus pentosaceus, Lactobacillus acidophilus, Lactobacillus plantarum probiotic during starter period on growth performance of male broiler chicken. F1000Res. 12:215. https://doi.org/10.12688/f1000research.130072.3
Kashyap, P., S. Kumar, C. S. Riar, N. Jindal, P. Baniwal, R. P. Guiné, P. M. Correia, R. Mehra, & H. Kumar. 2022. Recent advances in drumstick (Moringa oleifera) leaves bioactive compounds: composition, health benefits, bioaccessibility, and dietary applications. Antioxidants 11:402. https://doi.org/10.3390/antiox11020402
Kasolo, J. N., G. S. Bimenya, L. Ojok, J. Ochieng, & J. W. Ogwal-Okeng. 2010. Phytochemicals and uses of Moringa oleifera leaves in Ugandan rural communities. J. Med. Plant Res. 4:753–757.
Khanian, M., M. A. Karimi-Torshizi, & A. Allameh. 2019. Alleviation of aflatoxin-related oxidative damage to liver and improvement of growth performance in broiler chickens consumed Lactobacillus plantarum 299v for entire growth period. Toxicon 158:57–62. https://doi.org/10.1016/j.toxicon.2018.11.431
Laili, R. D., E. Martati, & M. Rifa’i. 2019. Immunomodulator effect of Moringa oleifera leaves fermented by Lactobacillus plantarum FNCC 0137 on Salmonella typhi infected Balb/C mice. Res. J. Pharm. Technol. 12:3595–3601. https://doi.org/10.5958/0974-360X.2019.00613.9
Lee, B. J. & J. Y. Kim. 2016. Identification of hemoglobin levels based on anthropometric indices in elderly Koreans. PLoS One 11:e0165622. https://doi.org/10.1371/journal.pone.0165622
Lokapirnasari, W. P., T. B. Pribadi, M. A. Al Arif, S. Soeharsono, S. Hidanah, N. Harijani, R. Najwan, K. Huda, H. C. Wardhani, N. F. Rahman, & A. B. Yulianto. 2019. Potency of probiotics Bifidobacterium spp. and Lactobacillus casei to improve growth performance and business analysis in organic laying hens. Vet. World 12:860–867. https://doi.org/10.14202/vetworld.2019.860-867
Lokapirnasari, W. P., M. Lamid, R. Kurnijasanti, N. Teriyanto, A. T. Kartika, E. H. Chandra, K. K. Riong, & A. B. Yulianto. 2020. Supplementation of synbiotic content of Moringa oleifera extract and Lactobacillus to improve growth performance in starter phase diet of broiler chicken. Tropical Journal Natural Product Research 4:1096–1100. https://doi.org/10.26538/tjnpr/v4i12.11
Lokapirnasari, W. P., B. Agustono, M. A. Al Arif, L. Maslachah, E. H. Chandra, & A. B. Yulianto. 2022a. Effect of probiotic and Moringa oleifera extract on performance, carcass yield, and mortality of Peking duck. Vet. World 15:694–700. https://doi.org/10.14202/vetworld.2022.694-700
Lokapirnasari, W. P., L. Maslachah, A. M. Sahidu, A. B. Yulianto, N. R. Pramestya, & R. D. Lestari. 2022b. The potency of Lactobacillus fermentum and Moringa oleifera extract with different fermentation time to improve the nutrient content of fermented rice bran. Res. J. Pharm. Technol. 15:3736–3742. https://doi.org/10.52711/0974-360X.2022.00626
Lokapirnasari, W. P., M. A. Al Arif, L. Maslachah, A. L. Kirana, A. Suryandari, A. B. Yulianto, & A. Sherasiya. 2023. The potency of Lactobacillus acidophillus and L. lactis probiotics and Guazuma ulmifolia Lam. extract as feed additives with different application times to improve nutrient intake and feed efficiency in Coturnix coturnix japonica females. J. Anim. Feed Sci. 32:59–67. https://doi.org/10.22358/jafs/156018/2022
Mangaonkar, A. A., A. J. Tande, & D. I. Bekele. 2021. Differential diagnosis and workup of monocytosis: A systematic approach to a common hematologic finding. Curr. Hematol. Malig. Rep. 16:267–275. https://doi.org/10.1007/s11899-021-00618-4
Mateova, S. I., J. Saly, M. Tuckova, J. Koscova, R. A. Nemcova, M. O. Gaalova, & D. A. Baranova. 2008. Effect of probiotics, prebiotics and herb oil on performance and metabolic parameters of broiler chickens. Med. Weter. 64:294–297.
Mbikay, M. 2012. Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: A review. Front. Pharmacol. 3:1–12. https://doi.org/10.3389/fphar.2012.00024
Moghaddam, M. F., H. Jalali, A. M. Nafchi, & L. Nouri. 2020. Evaluating the effects of lactic acid bacteria and olive leaf extract on the quality of gluten-free bread. J. Gene Rep. 21:100771. https://doi.org/10.1016/j.genrep.2020.100771
Nabi, N., I. Ahmed, & G. B. Wani. 2022. Hematological and serum biochemical reference intervals of rainbow trout, Oncorhynchus mykiss cultured in Himalayan aquaculture: Morphology, morphometrics and quantification of peripheral blood cells. Saudi J. Biol. Sci. 29:2942–2957. https://doi.org/10.1016/j.sjbs.2022.01.019
Nowak, D. J. & E. J. Greenfield. 2018. Declining urban and community tree cover in the United States. Urban For. Urban. Green. 32:32–55. https://doi.org/10.1016/j.ufug.2018.03.006
Olagbemide, P. T. & C. N. A. Philip. 2014. Proximate analysis and chemical composition of raw and defatted Moringa oleifera kernel. Advances Life Science Technology 24:92-99.
Owosibo, A. O., O. M. Odetola, O. O. Odunsi, O. O. Adejinmi, & O. O. Lawrence-Azua. 2013. Growth, haematology and serum biochemistry of broilers fed probiotics based diets. Afr. J. Agric. Res. 8:5076–5081.
Park, S. H., I. Hanning, A. Perrota, B. J. Bench, E. Alm, & S. C. Ricke. 2013. Modifying the gastrointestinal ecology in alternatively raised poultry and the potential for molecular and metabolomic assessment. Poult. Sci. 92:546–561. https://doi.org/10.3382/ps.2012-02734
Patil, S. V., B. V. Mohite, K. R. Marathe, N. S. Salunkhe, V. Marathe, & V. S. Patil. 2022. Moringa tree, gift of nature: A review on nutritional and industrial potential. Curr. Pharmacol. Rep. 8:262–280. https://doi.org/10.1007/s40495-022-00288-7
Qin, C., L. Gong, X. Zhang, Y. Wang, Y. Wang, B. Wang, Y. Li, & W. Li. 2018. Effect of Saccharomyces boulardii and Bacillus subtilis B10 on gut microbiota modulation in broilers. Anim. Nutr. 4:358–366. https://doi.org/10.1016/j.aninu.2018.03.004
Rahmati, F. 2017. Characterization of Lactobacillus, Bacillus and Saccharomyces isolated from Iranian traditional dairy products for potential sources of starter cultures. AIMS Microbiol. 3:815–825. https://doi.org/10.3934/microbiol.2017.4.815
Ramadurai, G., S. Mangala, K. Saravanan, & B. K. Panigrahi. 2010. Trace element studies on Tinospora cordifolia (Menispermaceae), Ocimum sanctum (Lamiaceae), Moringa oleifera (Moringaceae), and Phyllanthus niruri (Euphorbiaceae) using PIXE. Biol. Trace Elem. Res. 133:357–363. https://doi.org/10.1007/s12011-009-8439-1
Rodríguez-Pérez, C., R. Quirantes-Piné, A. Fernández-Gutiérrez, & A. Segura-Carretero. 2015. Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Ind. Crops Prod. 66:246–254. https://doi.org/10.1016/j.indcrop.2015.01.002
Saini, R. K., I. Sivanesan, & Y. S. Keum. 2016. Phytochemicals of Moringa oleifera: A review of their nutritional, therapeutic and industrial significance. 3 Biotech 6:203. https://doi.org/10.1007/s13205-016-0526-3
Scalfaro, C., A. Iacobino, C. Nardis, & G. Franciosa. 2017. Galleria mellonella as an in vivo model for assessing the protective activity of probiotics against gastrointestinal bacterial pathogens. FEMS Microbiol. Lett. 364:1–6. https://doi.org/10.1093/femsle/fnx064
Sugiharto, S. 2016. Role of nutraceuticals in gut health and growth performance of poultry. Journal Saudi Society Agricultural Sciences 15:99–111. https://doi.org/10.1016/j.jssas.2014.06.001
Teteh, A., E. Lawson, K. Tona, E. Decuypere, & M. Gbeassor. 2013. Moringa Oleifera leave: Hydro-alcoholic extract and effects on growth performance of broilers. Int. J. Poult. Sci. 12:401–405. https://doi.org/10.3923/ijps.2013.401.405
Ullah, F., M. Tahir, S. Naz, N. A. Khan, & U. R. Khan. 2022. In vitro efficacy and ameliorating effect of Moringa oleifera on growth, carcass, stress and digestibility of nutrients in Escherichia coli-infected broilers. J. Appl. Anim. Res. 50:118-124. https://doi.org/10.1080/09712119.2022.2039156
Wang, L., Y. Zhang, X. Guo, L. Gong, & B. Dong. 2022. Beneficial alteration in growth performance, immune status, and intestinal microbiota by supplementation of activated charcoal-herb extractum complex in broilers. Front. Microbiol. 13:856634. https://doi.org/10.3389/fmicb.2022.856634
Xu, Y., Y. Tian, Y. Cao, J. Li, H. Guo, Y. Su, Y. Tian, C. Wang, T. Wang, & L. Zhang. 2019. Probiotic properties of Lactobacillus paracasei subsp. paracasei L1 and its growth performance-promotion in chicken by improving the intestinal microflora. Front. Physiol. 10:937. https://doi.org/10.3389/fphys.2019.00937
Yoo, H. D., D. Kim, & S. H. Paek. 2012. Plant cell wall polysaccharides as potential resources for the development of novel prebiotics. Biomol. Ther. (Seoul) 20:371–379. https://doi.org/10.4062/biomolther.2012.20.4.371
Yulianto, B. & W. P. Lokapirnasari. 2018. Isolation and identification of lactic acid bacteria from the digestive tract of kampung chicken (Gallus gallus domesticus). Philipp. J. Vet. Med. 55:67–72.
Yulianto, A. B., L. T. Suwanti, T. V. Widiyatno, S. Suwarno, M. Yunus, W. Tyasningsih, S. Hidanah, O. Sjofjan, & W. P. Lokapirnasari. 2021. Probiotic Pediococcus pentosaceus ABY 118 to modulation of ChIFN-γ and ChIL-10 in broilers infected by Eimeria tenella oocyst. Vet. Med. Int. 2021:1–6. https://doi.org/10.1155/2021/1473208
Zahorec, R. 2021. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl. Lek. Listy. 122:474–488. https://doi.org/10.4149/BLL_2021_078
Zawistowska-Rojek, A. & S. Tyski. 2018. Are probiotic really safe for humans? Pol. J. Microbiol. 67:251–258. https://doi.org/10.21307/pjm-2018-044
Zhang, L., H. Ma, M. F. E. A. Kulyar, H. Pan, K. Li, A. Li, Q. Mo, Y. Wang, H. Dong, Y. Bao, & J. Li. 2022. Complete genome analysis of Lactobacillus fermentum YLF016 and its probiotic characteristics. Microb. Pathog. 162:105212. https://doi.org/10.1016/j.micpath.2021.105212
Zhang, L., R. Zhang, H. Jia, Z. Zhu, H. Li, & Y. Ma. 2021. Supplementation of probiotics in water beneficial growth performance, carcass traits, immune function, and antioxidant capacity in broiler chickens. Open Life Sci. 16:311–322. https://doi.org/10.1515/biol-2021-0031
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.