Nutrient Value and In Vitro Digestibility of Pennisetum purpureum cv. Mott under Varying Gamma Irradiation Doses in Acidic Soil

B. Putra, R. A. Gopar, M. Surachman, I. W. A. Darmawan, S. Maulana, B. Prasetya

Abstract

Gamma irradiation is an emerging technique in agriculture with the potential to enhance the nutritional quality of forage crops and improve their adaptability to infertile environments. This study examined how different doses of gamma irradiation affected the nutrient content, calcium (Ca) and phosphorus (P) uptakes, and the in vitro digestibility of Pennisetum purpureum cv. Mott, a forage grass cultivated on acidic soil. The experiment involved the application of various gamma irradiation doses (0 Gy, 5 Gy, 10 Gy, 15 Gy, 20 Gy, 25 Gy, and 30 Gy). Four replications were done using a randomized block design, with 25 P. purpureum cv. Mott seeds in each repetition, totaling 700 seeds. The plants were grown in acidic soil with a pH of approximately 4.5–5. After two months of growth, the plants were harvested, and various parameters were analyzed. The research results indicated that the treatment had a significant effect on increasing organic matter content (p<0.01), NDF (neutral detergent fiber) (p<0.01), ADF (acid detergent fiber) (p<0.01), cellulose (p<0.01), hemicellulose (p<0.01), crude protein (p<0.01), crude fat (p<0.05), non-nitrogen-free extract (p<0.05), fiber fractions (p<0.01), nutrient digestibility (p<0.01), and fiber fraction digestibility (p<0.01). Overall, it can be concluded from this study that a gamma irradiation dose of 15 gy can enhance the nutritional content of P. purpureum cv. Mott cultivated on acidic soil and improves its utilization efficiency for livestock due to the increased digestibility.

References

Abay, K. A., M. H. Abay, M. Amare, G. Berhane, & E. Aynekulu. 2022. Mismatch between soil nutrient deficiencies and fertilizer applications: implications for yield responses in Ethiopia. Journal International Association Agricultural Economics (United Kingdom) 53:215-230. https://doi.org/10.1111/agec.12689

Adams, S., C. T. Sello, G. X. Qin, D. Che, & R. Han. 2018. Does dietary fiber affect the levels of nutritional components after feed formulation? Fibers 6:29. https://doi.org/10.3390/fib6020029

Aganduk, A. A., P. Matanjun, T. S. Tan, & B. H. Khor. 2023. Proximate and physical analyses of crackers incorporated with red seaweed, Kappaphycus alvarezii. J. Appl. Phycol. 2023. https://doi.org/10.1007/s10811-023-03022-y

Aguerre, M. J., O. M. Peña, C. Velasquez, & G. Ferreira. 2023. Nutritional composition and in vitro ruminal digestibility of crabgrass (Digitaria sanguinalis (L.) Scop.) in monoculture or interseeded with cowpea (Vigna unguiculata (L.) Walp) and lablab (Lablab purpureus (L.) Sweet). Animals 13:2305. https://doi.org/10.3390/ani13142305

Ahloowalia, B. S. & M. Maluszynski. 2001. Induced mutations - A new paradigm in plant breeding. Euphytica 118:167-173. https://doi.org/10.1023/A:1004162323428

Aslaniyan, A., F. Ghanbari, J. B. Kouhsar, & B. K. Shahraki. 2023. Comparing the effects of gamma ray and alkaline treatments of sodium hydroxide and calcium oxide on chemical composition, ruminal degradation kinetics and crystallinity degree of soybean straw. Appl. Radiat. Isot. 191:110524. https://doi.org/10.1016/j.apradiso.2022.110524

Bayne, K. 1998. Developing guidelines on the care and use of animals. Ann. N. Y. Acad. Sci. 862:105-110. https://doi.org/10.1111/j.1749-6632.1998.tb09122.x

Chand, S., Indu, R. K. Singhal, & P. Govindasamy. 2022. Agronomical and breeding approaches to improve the nutritional status of forage crops for better livestock productivity. Grass Forage Sci. 77:11-32. https://doi.org/10.1111/gfs.12557

Chaudhary, J., A. Alisha, V. Bhatt, S. Chandanshive, N. Kumar, H. Sonah, R. Deshmukh, Z. Mir, A. Kumar, S. Yadav, & S. M. S. Shivaraj. 2019. Mutation breeding in tomato: advances, applicability and challenges. Plants 8:128. https://doi.org/10.3390/plants8050128

Cheng, T., C. Liu, Z. Hu, Z. Wang, & Z. Guo. 2022. Effects of γ-irradiation on structure and functional properties of pea fiber. Foods 11:1433. https://doi.org/10.3390/foods11101433

Chouychai, W. & K. Somtrakoon. 2022. Potential of plant growth regulators to enhance arsenic phytostabilization by Pennisetum purpureum Cv. Mott. Pertanika J. Trop. Agric. Sci. 45:835–851. https://doi.org/10.47836/pjtas.45.3.18

Csikós, N. & G. Tóth. 2023. Concepts of agricultural marginal lands and their utilisation: A Review. Agric. Syst. 204:103560. https://doi.org/10.1016/j.agsy.2022.103560

Darma, I. N. G., A. Jayanegara, A. Sofyan, E. B. Laconi, M. Ridla, & H. Herdian. 2023. Evaluation of nutritional values of tree-forage legume leaves from Gunungkidul District, Indonesia. Biodiversitas 24:2733-2744. https://doi.org/10.13057/biodiv/d240527

Dilaga, S. H., R. A. Putra, A. N. T. Pratama, O. Yanuarianto, M. Amin, & S. Suhubdy. 2022. Nutritional quality and in vitro digestibility of fermented rice bran based on different types and doses of inoculants. J. Adv. Vet. Anim. Res. 9:625-633. https://doi.org/10.5455/javar.2022.i632

Fageria, N. K. & A. S. Nascente. 2014. Management of soil acidity of south american soils for sustainable crop production. Advances Agronomy 128:221-275. https://doi.org/10.1016/B978-0-12-802139-2.00006-8

Firsoni, S. N. W. Hardani, & T. Wahyono. 2019. Fiber content and relative feed value estimation of gamma irradiated rice straw. IOP Conf. Ser. Mater. Sci. Eng. 546:042008. https://doi.org/10.1088/1757-899X/546/4/042008

Haberzettl, J., P. Hilgert, & M. von Cossel. 2021. A critical review on lignocellulosic biomass yield modeling and the bioenergy potential from marginal land. Agronomy 11:2397. https://doi.org/10.3390/agronomy11122397

He, Y., D. Jaiswal, X. Z. Liang, C. Sun, & S. P. Long. 2022. Perennial biomass crops on marginal land improve both regional climate and agricultural productivity. GCB Bioenergy 14:558-571. https://doi.org/10.1111/gcbb.12937

Katiyar, P., N. Pandey, & S. Keshavkant. 2022. Gamma radiation: A potential tool for abiotic stress mitigation and management of agroecosystem. Plant Stress 5:100089. https://doi.org/10.1016/j.stress.2022.100089

Kato, H., F. Li, & A. Shimizu. 2020. The selection of gamma-ray irradiated higher yield rice mutants by directed evolution method. Plants 9:1004. https://doi.org/10.3390/plants9081004

Leon, E., M. P. Hughes, & O. Daley. 2023. Nutritive value and herbage mass of Pueraria phaseoloides (Tropical Kudzu) in un-utilized open grasslands in North-Eastern and Central Trinidad and Tobago. Journal Saudi Society Agricultural Sciences 22:11-17. https://doi.org/10.1016/j.jssas.2022.05.002

Maluszynski, M., B. Sigurbjörnsson, E. Amano, L. Sitch, & O. Kamra. 1992. Mutant Varieties-Data Bank, FAO/IAEA Database. Part II. Mutation Breed News l39:14–17.

Mapato, C. & M. Wanapat. 2018. New roughage source of Pennisetum purpureum Cv. Mahasarakham utilization for ruminants feeding under global climate change. Asian-Australas. J. Anim. Sci. 31:1890-1896. https://doi.org/10.5713/ajas.18.0210

Mnich, E., N. Bjarnholt, A. Eudes, J. Harholt, C. Holland, B. Jørgensen, F. H. Larsen, M. Liu, R. Manat, A. S. Meyer, J. D. Mikkelsen, M. S. Motawia, J. Muschiol, B. L. Møller, S. R. Møller, A. Perzon, B. L. Petersen, J. L. Ravn, & P. Ulvskov. 2020. Phenolic cross-links: Building and de-constructing the plant cell wall. Nat. Prod. Rep. 37:919-961. https://doi.org/10.1039/C9NP00028C

Navarro, D. M. D. L., E. M. A. M. Bruininx, L. de Jong, & H. H. Stein. 2018. Analysis for low-molecular-weight carbohydrates is needed to account for all energy-contributing nutrients in some feed ingredients, but physical characteristics do not predict in vitro digestibility of dry matter. J. Anim. Sci. 96:532–544. https://doi.org/10.1093/jas/sky010

Owens, F. N., D. A. Sapienza, & A. T. Hassen. 2010. Effect of nutrient composition of feeds on digestibility of organic matter by cattle: a review. J. Anim. Sci. 88:E151-E169. https://doi.org/10.2527/jas.2009-2559

Putra, B., L. Warly, Evitayani, & B. P. Utama. 2022a. Effect of Arbuscular mycorrhizal fungi on nutrients and heavy metals uptake by Pennisetum purpureum cv Mott in phytoremediation of gold mine tailings. Journal Degraded Mining Lands Management 10:3795-3802. https://doi.org/10.15243/jdmlm.2022.101.3795

Putra, B., L. Warly, Evitayani, & B. P. Utama. 2022b. The role of Arbuscular mycorrhizal fungi in Phytoremediation of heavy metals and their effect on the growth of Pennisetum purpureum cv. mott on gold mine tailings in Muara Bungo, Jambi, Indonesia. Biodiversitas 23:478–485. https://doi.org/10.13057/biodiv/d230151

Raffrenato, E., R. Fievisohn, K. W. Cotanch, R. J. Grant, L. E. Chase, & M. E. Van Amburgh. 2017. Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate of digestion of grass forages. J. Dairy Sci. 100:8119-8131. https://doi.org/10.3168/jds.2016-12364

Saleem, S., N. Ul Mushtaq, A. Rasool, W. H. Shah, I. Tahir, & R. Ul Rehman. 2023. Plant nutrition and soil fertility: Physiological and molecular avenues for crop improvement. Sustainable Plant Nutrition: Molecular Interventions Advancements Crop Improvement 2023:23-249. https://doi.org/10.1016/B978-0-443-18675-2.00009-2

Sallustio, L., A. L. Harfouche, L. Salvati, M. Marchetti, & P. Corona. 2022. Evaluating the potential of marginal lands available for sustainable cellulosic biofuel production in Italy. Socio-Economic Plann. Sci. 82:101309. https://doi.org/10.1016/j.seps.2022.101309

Shehzadi, S., M. U. Farooq, R. Kausar, I. Ali, M. A. Ullah, & M. Shahbaz. 2021. Carbon sequestration and biomass assessment of mott grass (Pennisetum purpureum), in three growth stages in Barani areas of Pothwar, Pakistan. Pakistan Journal Agricultural Research 34:300-308. https://doi.org/10.17582/journal.pjar/2021/34.2.300.308

Van Soest, P. J., J. B. Robertson, M. B. Hall, & M. C. Barry. 2020. Klason lignin is a nutritionally heterogeneous fraction unsuitable for the prediction of forage neutral-detergent fibre digestibility in ruminants. Br. J. Nutr. 124:693-700. https://doi.org/10.1017/S0007114520001713

Taghinejad, M., A. Nikkhah, A. A. Sadeghi, G. Raisali, & M. Chamani. 2009. Effects of gamma irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of full-fat soybean. Asian-Australas. J. Anim. Sci. 22:534-541. https://doi.org/10.5713/ajas.2009.80567

Tan, J., X. Wu, Y. He, Y. Li, X. Li, X. Yu, & J. Shi. 2023. Mutual feedback mechanisms between functional traits and soil nutrients drive adaptive potential of tiger nuts (Cyperus esculentus L.) in marginal land. Plant Soil 495:177-194. https://doi.org/10.1007/s11104-023-06090-8

Tilley, J. M. A. & R. A. Terry. 1963. A two‐stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18:104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x

Udage, A. C. 2021. Introduction to plant mutation breeding: different approaches and mutageniagents. J. Agric. Sci. (Belihuloya) 16:466-483. https://doi.org/10.4038/jas.v16i03.9472

Yahaya, S. M., A. A. Mahmud, M. Abdullahi, & A. Haruna. 2023. Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: A review. Pedosphere 33:385-406. https://doi.org/10.1016/j.pedsph.2022.07.012

Yunita, R., P. H. Sinaga, E. G. Lestari, I. S. Dewi, & R. Purnamaningsih. 2023. Yield and agronomic performance of salinetolerant rice mutant lines. Appl. Ecol. Environ. Res. 21:1979-1989. https://doi.org/10.15666/aeer/2103_19791989

Authors

B. Putra
belaputramsc@gmail.com (Primary Contact)
R. A. Gopar
M. Surachman
I. W. A. Darmawan
S. Maulana
B. Prasetya
PutraB., GoparR. A., SurachmanM., DarmawanI. W. A., MaulanaS., & PrasetyaB. (2024). Nutrient Value and In Vitro Digestibility of Pennisetum purpureum cv. Mott under Varying Gamma Irradiation Doses in Acidic Soil. Tropical Animal Science Journal, 47(2), 206-214. https://doi.org/10.5398/tasj.2024.47.2.206

Article Details