SNP Detection in FREM2 Gene and Its Association with Carcass Quality in Bali Beef
Abstract
The FRAS1-related extracellular matrix protein 2 (FREM2) gene is one of the genes that play a role in controlling marbling scores in beef cattle. This study aimed to identify SNPs in exon 6 of the FREM2 gene and its association with carcass quality in Bali beef using ultrasonography. A total of 93 cattle were used: 55 cattle from Banjarmasin slaughterhouse, South Kalimantan, Indonesia, 28 cattle from Bali Cattle Breeding Centre in Bali Province, and 10 cattle from UPTD Kupang Regency, NTT, Indonesia. SNP of the FREM2 gene was identified by using sequencing techniques and then genotyping by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The association of FREM2 gene SNPs with carcass characteristics was analyzed using the General Linear Model (GLM) method using SPSS software version 22. Carcass (longissimus dorsi thickness; back fat thickness) and meat (intramuscular fat; marbling score) characteristics were identified non-invasively using ultrasonography images and then analyzed with Image-J NIH software. SNP at position g.89327G>A was located in exon 6 of the FREM2 gene and did not change the amino acid (prolineproline) sequence in Bali beef. The genotyping results with PCR-RFLP technique SNP g.89327G>A FREM2|BccI gene has high diversity. The alleles of A and G were 0.747 and 0.253, respectively. The diversity of SNP g.89327G>A was significantly associated (p<0.05) with longissimus dorsi thickness (LD), while back fat thickness, intramuscular fat, and marbling score did not significantly different (p>0.05). Thus, SNP at position g.89327G>A in exon 6 of the FREM2 gene might be used as a candidate genetic marker for carcass quality in Bali beef.
References
Abramovs, N., A. Brass, & M. Tassabehji. 2020. Hardy-weinberg equilibrium in the large scale genomic sequencing era. Front Genet. 11:210. https://doi.org/10.3389/fgene.2020.00210
Ali, T. & C. Borah. 2021. Analysis of amino acids network based on mutation and base positions. Gene Rep. 24:125–136. https://doi.org/10.1016/j.genrep.2021.101291
Bedhane, M., J. van der Werf, C. Gondro, N. Duijvesteijn, D. Lim, Park, B. Park, M. N. Park, R. S. Hee, & S. Clark. 2019. Genome-wide association study of meat quality traits in Hanwoo beef cattle using imputed whole-genome sequence data. Front. Genet. 10:1235. https://doi.org/10.3389/fgene.2019.01235
Bhat, S. A., S. M. Ahmad, N. A. Ganai, S. M. Khan, A. Malik, & R. A. Shah. 2017. Association of DGAT1, beta-casein and leptin gene polymorphism with milk quality and yield traits in Jersey and its cross with local Kashmiri cattle. J. Entomol. Zool. Stud. 5:557–561.
Budiman, C., I. I. Arief, & M. Yusuf. 2018. Optimasi ekstraksi DNA genomik probiotik Lactobacillus plantarum IIA-1A5 dari daging sapi peranakan ongole untuk Sekuensing genom utuh. J. I.Produksi Teknol. Hasil Peternakan 6:6–12. https://doi.org/10.29244/jipthp.6.1.6-12
Bulkaini, B., D. Dahlanuddin, T. Ariana, D. Kisworo, M. Maskur, & M. Mastur. 2022. Marbling score, cholesterol, and physical–chemical content of male Bali beef fed fermented pineapple peel. J. Adv. Vet. Anim. Res. 9:419–431. https://doi.org/10.5455/javar.2022.i610
Cai, X., S. Wu, T. D. Mipam, H. Luo, C. Yi, C. Xu, W. Zhao, H. Wang, & J. Zhong. 2021. Testis transcriptome profiling identified lncRNAs involved in spermatogenic arrest of cattleyak. Funct. Integr. Genomics 21:665–678. https://doi.org/10.1007/s10142-021-00806-8
Chesnokov, Y. V. & A. M. Artemyeva. 2015. Evaluation of the measure of polymorphism information of genetic diversity. Sel’skokhozyaistvennaya Biologiya 50:571-578. https://doi.org/10.15389/agrobiology.2015.5.571eng
Dairoh, J. Jakaria, M. F. Ulum, A. B. L. Ishak, & C. Sumantri. 2021. Association of snp g.232 G>T calpain gene with growth and live meat quality prediction using ultrasound images in Bali cattle. Jurnal Ilmu Ternak Veteriner 26:49–56.
Garnier‐Géré, P. & L. Chikhi. 2013. Population subdivision, Hardy–weinberg equilibrium and the wahlund effect. Encyclopedia Life Sciences 1–5. https://doi.org/10.1002/9780470015902.a0005446.pub3
George, D. & P. Mallery. 2019. IBM SPSS Statistics 26 Step by Step: A Simple Guide and Reference (16th ed.). Routledge. https://doi.org/10.4324/9780429056765
Grigoletto, L., J. B. S. Ferraz, H. R. Oliveira, J. P. Eler, F. O. Bussiman, S. B. C. Abreu, F. Baldi, & L. F. Brito. 2020. Genetic architecture of carcass and meat quality traits in montana tropical® composite beef cattle. Front. Genet. 11:123. https://doi.org/10.3389/fgene.2020.00123
Hafid, H., Hasnudi, H. A. Bain, F. Nasiu, Inderawati, P. Patriani, & S. H. Ananda. 2019. Effect of fasting time before slaughtering on body weight loss and carcass percentage of Bali cattle. IOP Conf. Ser. Earth Environ. Sci. 260:012051. https://doi.org/10.1088/1755-1315/260/1/012051
Hall, T. A. 1999. BioEdit: A User Friendly Biological Sequence Aligment Editor and Analysis Program for Windows 95/98/NT. Nucleid Acids Symposium Series 41:95–98. https://api.semanticscholar.org/CorpusID:82421255
Hashim, H. O. & M. B. S. Al-Shuhaib. 2019. Exploring the potential and limitations of pcr-rflp and pcr-sscp for snp detection: A review. J. Appl. Biotechnol. Rep. 6:137-144. https://doi.org/10.29252/JABR.06.04.02
Hilmia, N., R. R. Noor, C. Sumantri, R. Priyanto, & E. Gurnadi. 2015. Hubungan keragaman gen leptin dengan kualitas fisik daging sapi lokal di Ciamis. Jurnal Ilmu Ternak. 15:53–60.
Hunt, M. R., J. F. Legako, T. T. N. Dinh, A. J. Garmyn, T. G. O’Quinn, C. H. Corbin, R. J. Rathmann, J. C. Brooks, & M. F. Miller. 2016. Assessment of volatile compounds, neutral and polar lipid fatty acids of four beef muscles from USDA choice and select graded carcasses and their relationships with consumer palatability scores and intramuscular fat content. Meat Sci. 116:91–101. https://doi.org/10.1016/j.meatsci.2016.02.010
Ismail, R., E .Handiwirawan, S. Elieser, & J. Jakaria. 2020. Polymorphism of 5’UTR myostatin gene indel (g. 1256/TTTTA) and its association with body weight in Boerka crossbred goat. J. Indones. Trop. Anim. Agric. 45:163-172. https://doi.org/10.14710/jitaa.45.3.163-172
Jakaria, J., M. F. Ulum, D. Lestari, S. Akwila, D. E. W. T. Sihite, R. Priyanto, Muladno, & C. Sumantri. 2020. Investigating new SNPs of CAST, CAPN and SCCD genes in 5’UTR of Bali cattle. Biodiversitas 21:2971–2976. https://doi.org/10.13057/biodiv/d210713
Jakaria, J., H. Khasanah, R. Priyanto, M. Baihaqi, & M. F. Ulum. 2017. Prediction of meat quality in Bali cattle using ultrasound imaging. J. Indones. Trop. Anim. Agric. 42:59–65. https://doi.org/10.14710/jitaa.42.2.59-65
Kumar, S., G. Stecher, & K. Tamura. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870–1874. https://doi.org/10.1093/molbev/msw054
Lee, K. T., W. H. Chung, S. Y. Lee, J. W. Choi, J. Kim, D. Lim, S. Lee, G. W. Jang, B. Kim, Y. H. Choy, X. Liao, P. Stothard, S. S. Moore, S. H. Lee, A. Ahn, N. Kim & T. H. Kim. 2013. Whole-genome resequencing of Hanwoo (Korean cattle) and insight into regions of homozygosity. BMC Genomics 14:519. https://doi.org/10.1186/1471-2164-14-519
Li, X., M. Ekerljung, K. Lundström, & A. Lundén. 2013. Association of polymorphisms at DGAT1, leptin, SCD1, CAPN1 and CAST genes with color, marbling and water holding capacity in meat from beef cattle populations in Sweden. Meat Sci. 94:153–158. https://doi.org/10.1016/j.meatsci.2013.01.010
Li, L., Y. Zhu, X. Wang, Y. He, & B. Cao. 2014. Effects of differ-ent dietary energy and protein levels and sex on growth performance, carcass characteristics and meat quality of F1 Angus × Chinese Xiangxi yellow cattle. J. Anim. Sci. Biotechnol. 5:21. https://doi.org/10.1186/2049-1891-5-21
Magalhães, A. F. B., G. M. F. de Camargo, G. A. Junior-Fernandes, D. G. M. Gordo, R. L. Tonussi, R. B. Costa, R. Espigolan, R. M. de O. Silva, T. Bresolin, W. B. F. de Andrade, L. Takada, F. L. B. Feitosa, F. Baldi. & L. G. de Albuquerque. 2016. Genome-wide association study of meat quality traits in Nellore cattle. PLoS ONE 11:e0157845. https://doi.org/10.1371/journal.pone.0157845
Moniruzzaman, M., R. Khatun, & A. A. Mintoo. 2015. Application of marker assisted selection for livestock improvement in Bangladesh. Bangladesh Veterinarian 31:1–11. https://doi.org/10.3329/bvet.v31i1.22837
Nei, M. & S. Kumar. 2000. Molecular Evolution and Phylogenetics. New York: Oxford University. https://doi.org/10.1093/oso/9780195135848.001.0001
Nogalski, Z., P.Pogorzelska-Przybyłek, M. Sobczuk-Szul, A. Nogalska, M. Modzelewska-Kapituła, & C. Purwin. 2018. Carcass characteristics and meat quality of bulls and steers slaughtered at two different ages. Ital. J. Anim. Sci. 17:279–288. https://doi.org/10.1080/1828051X.2017.1383861
Óvilo, C., N. Trakooljul, Y. Núñez, F. Hadlich, E. Murani, M. Ayuso, C. García-Contreras, M. Vázquez-Gómez, A. I. Rey, F. Garcia, J. M. Gracia-Casco, C. Lopez-Bote, B. Isabel, A. Gonzales-Bulnes, K. Wimmers, & M. Munoz. 2022. SNP discovery and association study for growth, fatness and meat quality traits in Iberian crossbred pigs. Sci. Rep. 12:16361. https://doi.org/10.1038/s41598-022-20817-0
Park, S. J., S. H. Beak, D. J. S. Jung, S. Y. Kim, I. H. Jeong, M. Y. Piao, H. J. Kang, D. M. Fassah, S. W. Na, S. P. Yoo, & M. Baik. 2018. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle - A review. Asian-Australas. J. Anim. Sci. 31:1043–1061. https://doi.org/10.5713/ajas.18.0310
Putri, R., R. Priyanto, & A. Gunawan. 2015. Association of calpastatin (CAST) gene with growth traits and carcass characteristics in Bali cattle. Med. Pet. 38:145-149. https://doi.org/10.5398/medpet.2015.38.3.145
Raza, S. H. A., L. Gui, R. Khan, N. M. Schreurs, W. Xiaoyu, S. Wu, C. Mei, L.Wang, X. Ma, D. Wei, G. Guo, S. Zhang, X. Wang, H. A. Kaleri, & L. Zan. 2018. Association between FASN gene polymorphisms ultrasound carcass traits and intramuscular fat in Qinchuan cattle. Gene 645:55–59. https://doi.org/10.1016/j.gene.2017.12.034
Salamena, J. F. & B. J. Papilaja. 2010. Characterization and genetic relationships analysis of buffalo Maluku province. J. Indones. Trop. Anim. Agric. 35:75–82. https://doi.org/10.14710/jitaa.35.2.75-82
Singh, U., R. Deb, R. R. Alyethodi, R. Alex, S. Kumar, S. Chakraborty, K. Dhama, & A. Sharma. 2014. Molecular markers and their applications in cattle genetic research: A review. Biomarkers Genomic Medicine 6:49–58. https://doi.org/10.1016/j.bgm.2014.03.001
Tahuk, P. K., S. P. S. Budhi, P. Panjono, & E. Baliarti. 2018. Carcass and meat characteristics of male bali cattle in indonesian smallholder farms fed ration with different protein levels. Trop. Anim. Sci. J. 41:215–223. https://doi.org/10.5398/tasj.2018.41.3.215
Tsukahara, T. 2018. Genotyping of single nucleotide polymorphisms using the SNP-RFLP method. Biosci. Trends 12:240-246. https://doi.org/10.5582/bst.2018.01102
Wang, F., Y. Zhang, J. Li, X. Guo, B. Cui, & Z. Peng. 2016. Contribution of cross-links and proteoglycans in intramuscular connective tissue to shear force in bovine muscle with different marbling levels and maturities. LWT-Food Sci. Technol. 66:413–419. https://doi.org/10.1016/j.lwt.2015.10.059
Wawo, A. A. 2018. Effect of bulls on birth rate and birth weight by using semi-intensive Bali cattle maintenance. Chalaza Journal Animal Husbandry 3:24–28. https://doi.org/10.31327/chalaza.v3i1.539
Yeh, F. C., R. C. Yang, T. J. Boyle, Z. Ye, J. M. Xiyan, R. Yang, & T. J. Bone. 2000. Popgene 32, Microsoft Windows-Based Freeware for Population Genetic Analysis, Molecular Biology and Biotechnology Centre. Edmonton: University of Alberta. https://api.semanticscholar.org/CorpusID:64471650
Zajulie, M. I., M. Nasich, T. Susilawati, & K. Kuswati. 2015. Distribusi komponen karkas sapi Brahman Cross (BX) hasil penggemukan pada umur pemotongan yang berbeda. Jurnal Ilmu-Ilmu Peternakan. 25:24-34. https://doi.org/10.21776/ub.jiip.2015.025.01.04
Zalewska, M., K. Puppel, & T. Sakowski. 2021. Associations between gene polymorphisms and selected meat traits in cattle — A review. Anim. Biosci. 34:425–1438. https://doi.org/10.5713/ab.20.0672
Zhao, Y., Y. Pu, B. Liang, T. Bai, Y. Liu, L. Jiang, & Y. Ma. 2022. A study using single-locus and multi-locus genome-wide association study to identify genebedhanebhatcais associated with teat number in Hu sheep. Anim. Genet. 53:203–211. https://doi.org/10.1111/age.13169
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.