Dietary Supplementation of Spirulina platensis as a Substitute for Antibiotics in Arab Chicken (Gallus turcicus)
Abstract
This study was conducted to determine the effect of adding Spirulina platensis to replace zinc bacitracin on performance, egg quality, blood profile, total gut bacteria, and liver histopathology of local indigenous Arab chicken (Gallus turcicus). One hundred and eight 28-week-old laying hens were distributed randomly to three treatments: T0 (control diet), T1 (T0 + 1% S. platensis), and T2 (T0 + 0.04% zinc bacitracin). The treatment was applied for 49 days. S. platensis and zinc bacitracin decreased feed intake (p<0.05), but the egg mass had no significant effect; this provides a good improvement in feed conversion ratio (p<0.05). S. platensis helped maintain persistent egg production (p<0.05). S. platensis and zinc bacitracin provided the best results on haugh unit (p<0.05). S. platensis increased the yolk score (p<0.05). Zinc bacitracin decreased erythrocytes (p<0.05) but was not significantly different from S. platensis. S. platensis and zinc bacitracin increased mean corpuscular volume (MCV) (p<0.05). Blood chemical profile and total gut bacteria were not affected by the treatments. S. platensis was the best at maintaining liver’s health (p<0.05). This research concludes that S. platensis can efficiently optimize feed consumption, enhance performance, maintain egg quality, and protect the liver damage of Arab chicken. Therefore, S. platensis could be considered to replace the use of antibiotics.
References
Abbas, A. O., A. A. Alaqil, G. M. K. Mehaisen, & N. N. Kamel. 2022. Effect of dietary blue-green microalgae inclusion as a replacement to soybean meal on laying hens performance, egg quality, plasma metabolites, and hematology. Animals 12:2816. https://doi.org/10.3390/ani12202816
Agustini, T. W., M. Suzery, D. Sutrisnanto, W. F. Ma’ruf, & Hadiyanto. 2015. Comparative study of bioactive substances extracted from fresh and dried Spirulina sp. Procedia Environ. Sci. 23:282–289. https://doi.org/10.1016/j.proenv.2015.01.042
Ahmad, I., M. Ullah, M. Alkafafy, N. Ahmed, S. F. Mahmoud, K. Sohail, H. Ullah, W. M. Ghoneem, M. M. Ahmed, & S. Sayed. 2022. Identification of the economics, composition, and supplementation of maggot meal in broiler chicken. Saudi J. Biol. Sci. 29:103277. https://doi.org/10.1016/j.sjbs.2022.03.027
Al-Otaibi, M. I., H. A. Abdellatif, A. K. Al-Huwail, A. O. Abbas, G. M. Mehaisen, & E. S. Moustafa. 2022. Hypocholesterolemic, antioxidative, and anti-inflammatory effects of dietary Spirulina platensisis supplementation on laying hens exposed to cyclic heat stress. Animals 12:2759. https://doi.org/10.3390/ani12202759
An, H. M., Y. L. Tan, S. P. Tan, J. Shi, Z. R. Wang, F. D. Yang, X. F. Huang, J. C. Soars, T. R. Kosten, & X. Y. Zhang. 2016. Smoking and serum lipid profiles in schizophrenia. Neurosci. Bull. 32:383–388. https://doi.org/10.1007/s12264-016-0022-0
Attia, Y. A., R. S. Hamed, A. E. Abd El-Hamid, M. A. Al-Harthi, H. A. Shahba, & F. Bovera. 2015. Performance, blood profile, carcass and meat traits and tissue morphology in growing rabbits fed mannanoligosaccharides and zinc-bacitracin continuously or intermittently. Anim. Sci. Pap. Rep. 33:85–101.
Berbesh, S., R. El-Shawarby, E. El-Shewy, S. El-Sheshtawy, & S. Elshafae. 2022. Ameliorative effect of Spirulina platensis against cadmium toxicity in broiler chickens. Benha Vet. Med. J. 42:51–55. https://doi.org/10.21608/bvmj.2022.111546.1490
Curabay, B., B. Sevim, Y. Cufadar, & T. Ayasan. 2021. Effects of adding Spirulina plantesis to laying hens rations on performance, egg quality, and some blood parameters. J. Hellenic Vet. Med. Soc. 72:2945–2952.
Darmawan, M. A., Y. Y Suranindyah, & D. T. Widayati. 2019. The correlation between blood metabolic and reproductive performance on the holstein-friesian crossbred dairy cows. IOP Conf. Ser. Earth Environ. Sci. 387:012023. https://doi.org/10.1088/1755-1315/387/1/012023
Elahi, U., Y. Ma, S. Wu, J. Wang, H. Zhang, & G. Qi. 2019. Growth performance carcass characteristic, meat quality and serum profile of broiler chicks fed on housefly maggot meal as a replacement of soybean meal. J. Anim. Physiol.Anim. Nutr. 4:1075–1084. https://doi.org/10.1111/jpn.13265
El-Sheekh, M. M., S. M. Daboor, M. A. Swelim, & S. Mohamed. 2014. Production and characterization of antimicrobial active substance from Spirulina platensis. Iran J. Microbiol. 6:112–119. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281658/pdf/IJM-6-112.pdf
Farag, M. R., M. Alagawany, M. E. A. El-Hac, & K. Dhama. 2016. Nutritional and healthical aspects of spirulina (Arthrospira) for poultry. Intern. J. Pharmacol. 12:36–51. https://doi.org/10.3923/ijp.2016.36.51
Feng, Z. & X. Zhongsheng. 2019. Effects of Dietary Fructo-Oligosaccharides on Laying Performance and Serum Biochemical Parameters of Yellow Broiler Breeder Hens. In E3S Web of Conferences, 131, p. 01081. EDP Sciences. https://doi.org/10.1051/e3sconf/201913101081
Ismail, F., K. Sherif, Y. Rizk, M. Hassan, A. Mekawy, & K. Mahrose. 2023. Dietary supplementation of spirulina and canthaxanthin boosts laying performance, lipid profile in blood and egg yolk, hatchability, and semen quality of chickens. J. Anim. Physiol. Anim. Nutr. 107:650–658. https://doi.org/10.1111/jpn.13729
Indra, G. K., Achmanu, & A. Nurgiartiningsih. 2013. Performance production of arab chicken (Gallus turcicus) based on feather color. Ternak Tropika 14:8–14.
Joya, M., O. Ashayerizadeh, & B. Dastar. 2021. Effects of Spirulina (Arthrospira) platensis and Bacillus subtilis PB6 on growth performance, intestinal microbiota and morphology, and serum parameters in broiler chickens. Anim. Prod. Sci. 61:390–398. https://doi.org/10.1071/AN20218
Karimirad, R., H. Khosravinisa, & B. P. Kavan. 2020. Effect of differeny feed physical forms (pellet, crumble mash) on the performance and liver health in broiler chicken with and without carbon tetrachloride challenge. J. Anim. Feed Sci. 29:59–66. https://doi.org/10.22358/jafs/118818/2020
Kaewtapee, C. & A. Supratak. 2021. Yolk color measurement using image processing and deep learning. IOP Conf. Ser. Earth Environ. Sci. 686:012054. https://doi.org/10.1088/1755-1315/686/1/012054
Korany, R. M. S., K. S. Ahmed, H. A. El-Halawany, & K. A. Ahmed. 2019. Pathological and immunohistochemical studies on the ameliorating effect of Spirulina platensis against arsenic induced reproductive toxicity in female albino rats. Int. J. Vet. Sci. 8:113–119. http://www.ijvets.com/pdf-files/Volume-8-no-2-2019/113-119.pdf
Kumar, A. D. Ramamoorthy, D. K. Verma, A. Kumar, N. Kumar, K. R. Kanak, B. M. Marwein, & K. Mohan. 2022. Antioxidant and phytonutrient activities of Spirulina platensis. Energy Nexus. 6:100070. https://doi.org/10.1016/j.nexus.2022.100070
Ma, W. Q., H. Z. Cheng, D. H. Zhao, J. Yang, S. B. Wang, H. Z. Wu, M. Y. Lu, L. Xu, & G. J. Liu. 2020. Effects of dietary Enteromorpha powder supplementation on productive performance, egg quality and antioxidant performance during the late laying period in Zi geese. Poult. Sci. 99:1062–1068. https://doi.org/10.1016/j.psj.2019.10.003
Mariey, Y. A., H. R. Samak, H. Abou-Khashba, M. Sayed, & A. Abou-Zeid. 2014. Effect of using Spirulina platensis algae as feed additives for poultry diets: 2 productive performance of broiler. Egypt. Poult. Sci. 34:245–258.
Murmu, A. L., R. K. Verma, S. K. Yadav, S. Barik, S. K. Maurya, & S. Kumar. 2021. Effects of different meteorological variables on blood biochemical parametersin black Bengal goats. J. Entomol. Zool. Stud. 9:1887-1895. https://doi.org/10.22271/j.ento.2021.v9.i1aa.8407
Nannoni, E., G. Martelli, M. Scozzoli, S. Belperio, G. Buonaiuto, N. I. Vannetti, E. Truzzi, E. Rossi, S. Benvenuti, & L. Sardi. 2023. Effects of lavender essential oil inhalation on the welfare and meat quality of fattening heavy pigs intended for parma ham production. Animals 13:2967. https://doi.org/10.3390/ani13182967
National Research Council. 1994. Nutrient Requirements of Poultry: Ninth Revised Edition. Washington, DC. The National Academies Press. https://doi.org/10.17226/2114
Omri, B., M. Amraoui, A. Tarek, M. Lucarini, A. Durazzo, N. Cicero, A. Santini, & M. Kamoun. 2019. Arthrospira platensis (Spirulina) supplementation on laying hens’ performance: Eggs physical, chemical, and sensorial qualities. Foods 8:386. https://doi.org/10.3390/foods8090386
Park, J. H., S. I. Lee, & I. H. Kim. 2018. Effect of dietary Spirulina (Arthrospira) platensis on the growth performance, antioxidant enzyme activity, nutrient digestibility, cecal microflora, excreta noxious gas emission, and breast meat quality of broiler chickens. Poult. Sci. 97:2451–2459. https://doi.org/10.3382/ps/pey093
Phoonsawat, K., K. Khachornsakkul, N. Ratnarathorn, C. S. Henry, & W. Dungchai, W. 2021. Distance-based paper device for a naked-eye albumin-to-alkaline phosphatase ratio assay. ACS Sens. 6:3047-3055. https://doi.org/10.1021/acssensors.1c01058
Puteri, N. I., Gushairiyanto, & Depison. 2020. Growth patterns, body weight, and mophometric of KUB chicken, Sentul chicken and Arab chicken. Bulletin Animal Science 44:67–72. https://doi.org/10.21059/buletinpeternak.v44i3.57016
Rashidi, N., A. Khatibjoo, K. Taherpour, M. Akbari-Gharaei, & H. Shirzadi. 2020. Effects of licorice extract, probiotic, toxin binder and poultry litter biochar on performance, immune function, blood indices and liver histopathology of broilers exposed to aflatoxin-B1. Poult. Sci. 99:5896-5906. https://doi.org/10.1016/j.psj.2020.08.034
Rey, A. I., A. de-Cara, A. Rebolé, & I. Arija. 2021. Short-term spirulina (Spirulina platensis) supplementation and laying hen strain effects on eggs’ lipid profile and stability. Animals 11:1944. https://doi.org/10.3390/ani11071944
Sadr, S., N. Lotfalizadeh, S. A. Ghafouri, M. Delrobaei, N. Komeili, & A. Hajjafari. 2023. Nanotechnology innovations for increasing the productivity of poultry and the prospective of nanobiosensors. Vet. Med. Sci. 9:2118-2131. https://doi.org/10.1002/vms3.1193
Samreen, I. Ahmad, H. A. Malak, & H. H. Abulreesh. 2021. Environmental antimicrobial resistance and its drivers: a potential threat to public health. J. Glob. Antimicrob. Resist. 27:101-111. https://doi.org/10.1016/j.jgar.2021.08.001
Sarker, M. S., K. Rafiq, M. M. Rahman, K. K. I. Khalil, M. S. Islam, & M. S. Islam. 2022. Effects of spirulina (Spirulina platensis) on production, hematological parameters and lipid profile in layers. Agriculture Livestock Fisheries 9:49-55. https://doi.org/10.3329/ralf.v9i1.59535
Selim, S., E. Hussein, & R. Abou-Elkhair. 2018. Effect of Spirulina plantesis as a feed additive on laying performance, egg quality and hepatoprotective activity of laying hens. Eur. Poult. Sci. 82:1–13. https://doi.org/10.1399/eps.2018.227
Sharoud, M. N. M. 2015. Protective effect of spirulina against paracetamol-induced hepatic injury in rats. Journal Experimental Biology Agricultural 3:44–53. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=dc16e5d7009fd072ef7ebeab6a69d035f9cad76b
Sijabat, A. C. G., S. Isdadiyanto, & A. J. Sitasiwi. 2023. Rat liver function induced by a high-fat diet after giving mahogany seeds ethanol extract. J. Biol. Educ. 15:230-236. https://doi.org/10.15294/biosaintifika.v15i2.44632
Stadelman, W. J. & O. J. Cotterill. 1995. Quality Identification of Shell Eggs. In: Egg Science and Technology. Haworth Press, Inc., New York, NY. Pp. 39–66.
Sugiharto, T. Yudiarti, I. Isroli, & E. Widiastuti. 2018. Effect of feeding duration of Spirulina plantesis on growth performance, haematological parameters, intestinal microbial population and carcass traits of broiler chicks. S. Afr. J. Anim. Sci. 48:98–107. https://doi.org/10.4314/sajas.v48i1.12
Sunarno, S., E. A. Kusuma, & A. J. Sitasiwi. 2023. Protein and cholesterol levels of duck eggs after the addition of nanochitosan as a feed additive. J. Biol. Educ.15:150-157. https://doi.org/10.15294/biosaintifika.v15i2.41180
Suzana, D., F. D. Suyatna, R. Andrajati, S. P. Sari, & A. Mun’im. 2017. Effect of Moringa oleifera leaves extract against hematology and blood biochemical value of patients with iron deficiency anemia. J. Young Pharm. 9:79-84. https://doi.org/10.5530/jyp.2017.1s.20
Tamzil, M. H. & B. Indarsih. 2022. Thirty years development observation of Braekel chicken (Gallus turnicus) into Arabic chicken in Indonesia. Asian J. Anim. Sci. 16: 62-67. https://doi.org/10.3923/ajas.2022.62.67
Tessier, R., J. Calvez, N. Khodorova, & C. Gaudichon. 2021. Protein and amino acid digestibility of 15 N spirulina in rats. Eur. J. Nutr. 60:2263-2269. https://doi.org/10.1007/s00394-020-02368-0
Tufarelli, V., P. Baghban-Kanani, S. Azimi-Youvalari, B. Hosseintabar-Ghasemabad, M. Slozhenkina, I. Gorlov, A. Seidavi, T. Ayasan, & V. Laudadio. 2021. Effects of horsetail (Equisetum arvense) and spirulina (Spirulina platensis) dietary supplementation on laying hens productivity and oxidative status. Animals 11:335. https://doi.org/10.3390/ani11020335
Vaz, B. S., J. B. Moreira, M. G. de Morais, & J. A. V. Costa. 2016. Microalgae as a new source of bioactive compounds in food supplements. Curr. Opin. Food Sci. 7:73–77. https://doi.org/10.1016/j.cofs.2015.12.006
Zhou, Y., F. Tan, C. Li, W. Li, W. Liao, Q. Li, G. Qin, W. Lu, & X. Zhao. 2019. White peony (fermented Camellia sinensis) polyphenols help prevent alcoholic liver injury via antioxidation. Antioxidants 8:524. https://doi.org/10.3390/antiox8110524
Zeweil, H., I. M. Abaza, S. M. Zahran, M. H. Ahmed, H. M. Aboul-Ela, & A. S. Asmaa. 2016. Effect of Spirulina platensis as dietary supplement on some biological traits for chickens under heat stress condition. Asian Journal Biomedical Pharmaceutical Sciences 6:8–12.
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.