Dietary Supplementation of Spirulina platensis as a Substitute for Antibiotics in Arab Chicken (Gallus turcicus)

N. A. Hasna, E. Widiastuti, I. Agusetyaningsih, E. C. Wulandari, R. Murwani, T. Yudiarti, T. A. Sartono, S. Sugiharto, H. I. Wahyuni

Abstract

This study was conducted to determine the effect of adding Spirulina platensis to replace zinc bacitracin on performance, egg quality, blood profile, total gut bacteria, and liver histopathology of local indigenous Arab chicken (Gallus turcicus). One hundred and eight 28-week-old laying hens were distributed randomly to three treatments: T0 (control diet), T1 (T0 + 1% S. platensis), and T2 (T0 + 0.04% zinc bacitracin). The treatment was applied for 49 days. S. platensis and zinc bacitracin decreased feed intake (p<0.05), but the egg mass had no significant effect; this provides a good improvement in feed conversion ratio (p<0.05). S. platensis helped maintain persistent egg production (p<0.05). S. platensis and zinc bacitracin provided the best results on haugh unit (p<0.05). S. platensis increased the yolk score (p<0.05). Zinc bacitracin decreased erythrocytes (p<0.05) but was not significantly different from S. platensis. S. platensis and zinc bacitracin increased mean corpuscular volume (MCV) (p<0.05). Blood chemical profile and total gut bacteria were not affected by the treatments. S. platensis was the best at maintaining liver’s health (p<0.05). This research concludes that S. platensis can efficiently optimize feed consumption, enhance performance, maintain egg quality, and protect the liver damage of Arab chicken. Therefore, S. platensis could be considered to replace the use of antibiotics.

References

Abbas, A. O., A. A. Alaqil, G. M. K. Mehaisen, & N. N. Kamel. 2022. Effect of dietary blue-green microalgae inclusion as a replacement to soybean meal on laying hens performance, egg quality, plasma metabolites, and hematology. Animals 12:2816. https://doi.org/10.3390/ani12202816

Agustini, T. W., M. Suzery, D. Sutrisnanto, W. F. Ma’ruf, & Hadiyanto. 2015. Comparative study of bioactive substances extracted from fresh and dried Spirulina sp. Procedia Environ. Sci. 23:282–289. https://doi.org/10.1016/j.proenv.2015.01.042

Ahmad, I., M. Ullah, M. Alkafafy, N. Ahmed, S. F. Mahmoud, K. Sohail, H. Ullah, W. M. Ghoneem, M. M. Ahmed, & S. Sayed. 2022. Identification of the economics, composition, and supplementation of maggot meal in broiler chicken. Saudi J. Biol. Sci. 29:103277. https://doi.org/10.1016/j.sjbs.2022.03.027

Al-Otaibi, M. I., H. A. Abdellatif, A. K. Al-Huwail, A. O. Abbas, G. M. Mehaisen, & E. S. Moustafa. 2022. Hypocholesterolemic, antioxidative, and anti-inflammatory effects of dietary Spirulina platensisis supplementation on laying hens exposed to cyclic heat stress. Animals 12:2759. https://doi.org/10.3390/ani12202759

An, H. M., Y. L. Tan, S. P. Tan, J. Shi, Z. R. Wang, F. D. Yang, X. F. Huang, J. C. Soars, T. R. Kosten, & X. Y. Zhang. 2016. Smoking and serum lipid profiles in schizophrenia. Neurosci. Bull. 32:383–388. https://doi.org/10.1007/s12264-016-0022-0

Attia, Y. A., R. S. Hamed, A. E. Abd El-Hamid, M. A. Al-Harthi, H. A. Shahba, & F. Bovera. 2015. Performance, blood profile, carcass and meat traits and tissue morphology in growing rabbits fed mannanoligosaccharides and zinc-bacitracin continuously or intermittently. Anim. Sci. Pap. Rep. 33:85–101.

Berbesh, S., R. El-Shawarby, E. El-Shewy, S. El-Sheshtawy, & S. Elshafae. 2022. Ameliorative effect of Spirulina platensis against cadmium toxicity in broiler chickens. Benha Vet. Med. J. 42:51–55. https://doi.org/10.21608/bvmj.2022.111546.1490

Curabay, B., B. Sevim, Y. Cufadar, & T. Ayasan. 2021. Effects of adding Spirulina plantesis to laying hens rations on performance, egg quality, and some blood parameters. J. Hellenic Vet. Med. Soc. 72:2945–2952.

Darmawan, M. A., Y. Y Suranindyah, & D. T. Widayati. 2019. The correlation between blood metabolic and reproductive performance on the holstein-friesian crossbred dairy cows. IOP Conf. Ser. Earth Environ. Sci. 387:012023. https://doi.org/10.1088/1755-1315/387/1/012023

Elahi, U., Y. Ma, S. Wu, J. Wang, H. Zhang, & G. Qi. 2019. Growth performance carcass characteristic, meat quality and serum profile of broiler chicks fed on housefly maggot meal as a replacement of soybean meal. J. Anim. Physiol.Anim. Nutr. 4:1075–1084. https://doi.org/10.1111/jpn.13265

El-Sheekh, M. M., S. M. Daboor, M. A. Swelim, & S. Mohamed. 2014. Production and characterization of antimicrobial active substance from Spirulina platensis. Iran J. Microbiol. 6:112–119. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281658/pdf/IJM-6-112.pdf

Farag, M. R., M. Alagawany, M. E. A. El-Hac, & K. Dhama. 2016. Nutritional and healthical aspects of spirulina (Arthrospira) for poultry. Intern. J. Pharmacol. 12:36–51. https://doi.org/10.3923/ijp.2016.36.51

Feng, Z. & X. Zhongsheng. 2019. Effects of Dietary Fructo-Oligosaccharides on Laying Performance and Serum Biochemical Parameters of Yellow Broiler Breeder Hens. In E3S Web of Conferences, 131, p. 01081. EDP Sciences. https://doi.org/10.1051/e3sconf/201913101081

Ismail, F., K. Sherif, Y. Rizk, M. Hassan, A. Mekawy, & K. Mahrose. 2023. Dietary supplementation of spirulina and canthaxanthin boosts laying performance, lipid profile in blood and egg yolk, hatchability, and semen quality of chickens. J. Anim. Physiol. Anim. Nutr. 107:650–658. https://doi.org/10.1111/jpn.13729

Indra, G. K., Achmanu, & A. Nurgiartiningsih. 2013. Performance production of arab chicken (Gallus turcicus) based on feather color. Ternak Tropika 14:8–14.

Joya, M., O. Ashayerizadeh, & B. Dastar. 2021. Effects of Spirulina (Arthrospira) platensis and Bacillus subtilis PB6 on growth performance, intestinal microbiota and morphology, and serum parameters in broiler chickens. Anim. Prod. Sci. 61:390–398. https://doi.org/10.1071/AN20218

Karimirad, R., H. Khosravinisa, & B. P. Kavan. 2020. Effect of differeny feed physical forms (pellet, crumble mash) on the performance and liver health in broiler chicken with and without carbon tetrachloride challenge. J. Anim. Feed Sci. 29:59–66. https://doi.org/10.22358/jafs/118818/2020

Kaewtapee, C. & A. Supratak. 2021. Yolk color measurement using image processing and deep learning. IOP Conf. Ser. Earth Environ. Sci. 686:012054. https://doi.org/10.1088/1755-1315/686/1/012054

Korany, R. M. S., K. S. Ahmed, H. A. El-Halawany, & K. A. Ahmed. 2019. Pathological and immunohistochemical studies on the ameliorating effect of Spirulina platensis against arsenic induced reproductive toxicity in female albino rats. Int. J. Vet. Sci. 8:113–119. http://www.ijvets.com/pdf-files/Volume-8-no-2-2019/113-119.pdf

Kumar, A. D. Ramamoorthy, D. K. Verma, A. Kumar, N. Kumar, K. R. Kanak, B. M. Marwein, & K. Mohan. 2022. Antioxidant and phytonutrient activities of Spirulina platensis. Energy Nexus. 6:100070. https://doi.org/10.1016/j.nexus.2022.100070

Ma, W. Q., H. Z. Cheng, D. H. Zhao, J. Yang, S. B. Wang, H. Z. Wu, M. Y. Lu, L. Xu, & G. J. Liu. 2020. Effects of dietary Enteromorpha powder supplementation on productive performance, egg quality and antioxidant performance during the late laying period in Zi geese. Poult. Sci. 99:1062–1068. https://doi.org/10.1016/j.psj.2019.10.003

Mariey, Y. A., H. R. Samak, H. Abou-Khashba, M. Sayed, & A. Abou-Zeid. 2014. Effect of using Spirulina platensis algae as feed additives for poultry diets: 2 productive performance of broiler. Egypt. Poult. Sci. 34:245–258.

Murmu, A. L., R. K. Verma, S. K. Yadav, S. Barik, S. K. Maurya, & S. Kumar. 2021. Effects of different meteorological variables on blood biochemical parametersin black Bengal goats. J. Entomol. Zool. Stud. 9:1887-1895. https://doi.org/10.22271/j.ento.2021.v9.i1aa.8407

Nannoni, E., G. Martelli, M. Scozzoli, S. Belperio, G. Buonaiuto, N. I. Vannetti, E. Truzzi, E. Rossi, S. Benvenuti, & L. Sardi. 2023. Effects of lavender essential oil inhalation on the welfare and meat quality of fattening heavy pigs intended for parma ham production. Animals 13:2967. https://doi.org/10.3390/ani13182967

National Research Council. 1994. Nutrient Requirements of Poultry: Ninth Revised Edition. Washington, DC. The National Academies Press. https://doi.org/10.17226/2114

Omri, B., M. Amraoui, A. Tarek, M. Lucarini, A. Durazzo, N. Cicero, A. Santini, & M. Kamoun. 2019. Arthrospira platensis (Spirulina) supplementation on laying hens’ performance: Eggs physical, chemical, and sensorial qualities. Foods 8:386. https://doi.org/10.3390/foods8090386

Park, J. H., S. I. Lee, & I. H. Kim. 2018. Effect of dietary Spirulina (Arthrospira) platensis on the growth performance, antioxidant enzyme activity, nutrient digestibility, cecal microflora, excreta noxious gas emission, and breast meat quality of broiler chickens. Poult. Sci. 97:2451–2459. https://doi.org/10.3382/ps/pey093

Phoonsawat, K., K. Khachornsakkul, N. Ratnarathorn, C. S. Henry, & W. Dungchai, W. 2021. Distance-based paper device for a naked-eye albumin-to-alkaline phosphatase ratio assay. ACS Sens. 6:3047-3055. https://doi.org/10.1021/acssensors.1c01058

Puteri, N. I., Gushairiyanto, & Depison. 2020. Growth patterns, body weight, and mophometric of KUB chicken, Sentul chicken and Arab chicken. Bulletin Animal Science 44:67–72. https://doi.org/10.21059/buletinpeternak.v44i3.57016

Rashidi, N., A. Khatibjoo, K. Taherpour, M. Akbari-Gharaei, & H. Shirzadi. 2020. Effects of licorice extract, probiotic, toxin binder and poultry litter biochar on performance, immune function, blood indices and liver histopathology of broilers exposed to aflatoxin-B1. Poult. Sci. 99:5896-5906. https://doi.org/10.1016/j.psj.2020.08.034

Rey, A. I., A. de-Cara, A. Rebolé, & I. Arija. 2021. Short-term spirulina (Spirulina platensis) supplementation and laying hen strain effects on eggs’ lipid profile and stability. Animals 11:1944. https://doi.org/10.3390/ani11071944

Sadr, S., N. Lotfalizadeh, S. A. Ghafouri, M. Delrobaei, N. Komeili, & A. Hajjafari. 2023. Nanotechnology innovations for increasing the productivity of poultry and the prospective of nanobiosensors. Vet. Med. Sci. 9:2118-2131. https://doi.org/10.1002/vms3.1193

Samreen, I. Ahmad, H. A. Malak, & H. H. Abulreesh. 2021. Environmental antimicrobial resistance and its drivers: a potential threat to public health. J. Glob. Antimicrob. Resist. 27:101-111. https://doi.org/10.1016/j.jgar.2021.08.001

Sarker, M. S., K. Rafiq, M. M. Rahman, K. K. I. Khalil, M. S. Islam, & M. S. Islam. 2022. Effects of spirulina (Spirulina platensis) on production, hematological parameters and lipid profile in layers. Agriculture Livestock Fisheries 9:49-55. https://doi.org/10.3329/ralf.v9i1.59535

Selim, S., E. Hussein, & R. Abou-Elkhair. 2018. Effect of Spirulina plantesis as a feed additive on laying performance, egg quality and hepatoprotective activity of laying hens. Eur. Poult. Sci. 82:1–13. https://doi.org/10.1399/eps.2018.227

Sharoud, M. N. M. 2015. Protective effect of spirulina against paracetamol-induced hepatic injury in rats. Journal Experimental Biology Agricultural 3:44–53. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=dc16e5d7009fd072ef7ebeab6a69d035f9cad76b

Sijabat, A. C. G., S. Isdadiyanto, & A. J. Sitasiwi. 2023. Rat liver function induced by a high-fat diet after giving mahogany seeds ethanol extract. J. Biol. Educ. 15:230-236. https://doi.org/10.15294/biosaintifika.v15i2.44632

Stadelman, W. J. & O. J. Cotterill. 1995. Quality Identification of Shell Eggs. In: Egg Science and Technology. Haworth Press, Inc., New York, NY. Pp. 39–66.

Sugiharto, T. Yudiarti, I. Isroli, & E. Widiastuti. 2018. Effect of feeding duration of Spirulina plantesis on growth performance, haematological parameters, intestinal microbial population and carcass traits of broiler chicks. S. Afr. J. Anim. Sci. 48:98–107. https://doi.org/10.4314/sajas.v48i1.12

Sunarno, S., E. A. Kusuma, & A. J. Sitasiwi. 2023. Protein and cholesterol levels of duck eggs after the addition of nanochitosan as a feed additive. J. Biol. Educ.15:150-157. https://doi.org/10.15294/biosaintifika.v15i2.41180

Suzana, D., F. D. Suyatna, R. Andrajati, S. P. Sari, & A. Mun’im. 2017. Effect of Moringa oleifera leaves extract against hematology and blood biochemical value of patients with iron deficiency anemia. J. Young Pharm. 9:79-84. https://doi.org/10.5530/jyp.2017.1s.20

Tamzil, M. H. & B. Indarsih. 2022. Thirty years development observation of Braekel chicken (Gallus turnicus) into Arabic chicken in Indonesia. Asian J. Anim. Sci. 16: 62-67. https://doi.org/10.3923/ajas.2022.62.67

Tessier, R., J. Calvez, N. Khodorova, & C. Gaudichon. 2021. Protein and amino acid digestibility of 15 N spirulina in rats. Eur. J. Nutr. 60:2263-2269. https://doi.org/10.1007/s00394-020-02368-0

Tufarelli, V., P. Baghban-Kanani, S. Azimi-Youvalari, B. Hosseintabar-Ghasemabad, M. Slozhenkina, I. Gorlov, A. Seidavi, T. Ayasan, & V. Laudadio. 2021. Effects of horsetail (Equisetum arvense) and spirulina (Spirulina platensis) dietary supplementation on laying hens productivity and oxidative status. Animals 11:335. https://doi.org/10.3390/ani11020335

Vaz, B. S., J. B. Moreira, M. G. de Morais, & J. A. V. Costa. 2016. Microalgae as a new source of bioactive compounds in food supplements. Curr. Opin. Food Sci. 7:73–77. https://doi.org/10.1016/j.cofs.2015.12.006

Zhou, Y., F. Tan, C. Li, W. Li, W. Liao, Q. Li, G. Qin, W. Lu, & X. Zhao. 2019. White peony (fermented Camellia sinensis) polyphenols help prevent alcoholic liver injury via antioxidation. Antioxidants 8:524. https://doi.org/10.3390/antiox8110524

Zeweil, H., I. M. Abaza, S. M. Zahran, M. H. Ahmed, H. M. Aboul-Ela, & A. S. Asmaa. 2016. Effect of Spirulina platensis as dietary supplement on some biological traits for chickens under heat stress condition. Asian Journal Biomedical Pharmaceutical Sciences 6:8–12.

Authors

N. A. Hasna
E. Widiastuti
I. Agusetyaningsih
E. C. Wulandari
R. Murwani
T. Yudiarti
T. A. Sartono
S. Sugiharto
H. I. Wahyuni
hihannyiw123@gmail.com (Primary Contact)
HasnaN. A., WidiastutiE., AgusetyaningsihI., WulandariE. C., MurwaniR., YudiartiT., SartonoT. A., SugihartoS., & WahyuniH. I. (2024). Dietary Supplementation of Spirulina platensis as a Substitute for Antibiotics in Arab Chicken (Gallus turcicus). Tropical Animal Science Journal, 47(2), 180-187. https://doi.org/10.5398/tasj.2024.47.2.180

Article Details