Exploring the Impact of Kisspeptin-10 on the Fecundity Traits of Anestrus Iraqi Cows
Abstract
The inactive ovaries of cattle caused a significant economic loss, so the current study is intended to recover and enhance the fertility of dairy cattle suffering from anestrus by kisspeptin-10. Forty Holstein Friesian cows, aged 3.5-6.8 years with inactive ovaries for 60-70 days of postpartum, were distributed randomly into four equal groups. The control (C) group administered 5 mL intramuscularly (I.M) of normal saline, Gn group administered 0.5 mg/animal I.M of GnRH. K1 and K2 were administered with 6 μg/kg BW I.M and 12 μg/kg BW I.M of kisspeptin-10, respectively. After heat signs were detected, artificial insemination was performed. Blood samples were collected at 0, 2, 6, 24, and 72 hours post-hormonal injection to estimate fertility hormones, and fecundity features were demonstrated after hormonal treatment and after twelve months. The current results noted a significant (p<0.05) increment in estradiol, FSH, and LH in K1 and K2 cows compared to Gn and C at 6-24 h post hormonal treatment, while progesterone showed a significant (p<0.05) drop in K1, Gn, and K2 in comparison with C. Also, the calving and fertility rates were significantly higher (p<0.05) in K2 and K1 compared with Gn and C after hormonal treatment and after one year. The kisspeptin-10 injection improved the fertility of anestrus cows by enhancing the reproductive hormonal profile and fertility traits for long-term effects and without requiring a second kisspeptin-10 injection in Holstein Friesian cows; therefore, administration of kisspeptin-10 can be regarded as an alternative application of using some hormones like GnRH.
References
Abdulkareem, T. A., S. A. Al-Sharifi, S. M. Eidan, & R. G. Sasser. 2012. Reproductive and productive performance of Iraqi buffaloes as influenced of pre-mating and pre-calving concentrate supplementation. Pak. Vet. J. 32:345-348.
AL-Ameri, M. H. 2019. Comparison of hormonal treatment kisspeptin with GnRH and hCG on the some reproductive performance of cyprus, does during non-breeding. Adv. Anim. Vet. Sci. 7:537-542. https://doi.org/10.17582/journal.aavs/2019/7.7.537.542
Al-Hamedawi, T. M., A. H. Ghafel, & S. M. AL-Shammary. 2016. Induction of fertile estrus by using CIDR and PMSG in anestrous lactating Holstein-Friesian cows suffering from inactive ovaries. Euphrates Journal Agricultural Science 9:1-7.
Al-Khawaja, A. K., S. A. Matti, R. F. Asadi, K. M. Mokhtar, & S. H. Aboona. 1978. The Composition and Nutritive Value of Iraqi Feed Stuff. Division Publication. Ministry of Agriculture. Iraq.
AL-Nuaimi, A. J., A. A. Alzahid, T. A. Alrubaye, A. R. Abid, R. A. Jawad, N. M. Al-Khafaji, J. K. Al-Sabbagh, & M. S. Hassan. 2020. Effect of Progesterone and GnRH treatment on non-functional ovaries in Holstein cows after calving in Babylon province. IOP Conf. Ser. Earth Environ. Sci. 553:012021. https://doi.org/10.1088/1755-1315/553/1/012021
Amin, Y. A., N. A. Youssef, A. Z. Mahmoud, M. Salah, A. M. Khalil, O. Shanab, & A. S. Hassaneen. 2022. Impact of polyherbal formulation oral administration on the estrus response, luteal activity, and oxidative stress in postpartum dairy cows with ovarian subfunction. Vet. World 15:360-367. https://doi.org/10.14202/vetworld.2022.360-367
Azizi, V., S. Oryan, & H. Khazali. 2020. The effect of intracerebroventricular administration of neuropeptide Y on reproductive axis function in the male Wistar rats: Involvement of hypothalamic KiSS1/GPR54 system. Vet. Res. Forum 11:249–256.
Beltramo, M. & C. Decourt. 2018. Towards new strategies to manage livestock reproduction using kisspeptin analogs. Theriogenology 112:2–10. https://doi.org/10.1016/j.theriogenology.2017.08.026
Chacher, M. F. A., A. Çolak, & A. Hayirli. 2017. Efficacy of repeatedly used CIDR device in cattle reproduction: A metaanalysis review of progesterone concentration and conception rate. Turk. J. Vet. Anim. Sci. 41:692-697. https://doi.org/10.3906/vet-1706-75
Daniel, J. A., C. F. Foradori, B. K. Whitlock, & J. L. Sartin. 2015. Reproduction and beyond, kisspeptin in ruminants. J. Anim. Sci. Biotechnol. 6:23. https://doi.org/10.1186/s40104-015-0021-4
Fratangelo, F., M. V. Carriero, & M. L. Motti. 2018. Controversial role of kisspeptins/KiSS-1R signaling system in tumor development. Front. Endocrinol. 9:192. https://doi.org/10.3389/fendo.2018.00192
Galina, C. S. & M. Geffroy. 2023. Dual-purpose cattle raised in tropical conditions: what are their shortcomings in sound productive and reproductive function? Animals 13:2224. https://doi.org/10.3390/ani13132224
Gogaev, O., G. Y. Ostaev, B. Khosiev, N. Kravchenko, D. Kondratiev, & E. Nekrasova. 2019. Zootechnical and management accounting factors of beef cattle: Cost optimization. Res. J. Pharm. Biol. Chem. Sci. 10:221-231.
Hameed, W. S. & H. A. Alsalim. 2022. Ultrasonographical and hormonal comparative between true and postpartum anestrus of cows in south of Iraq. Int. J. Health Sci. 6:7909–7925. https://doi.org/10.53730/ijhs.v6nS6.12183
Hassaneen, A., Y. Naniwa, Y. Suetomi, S. Matsuyama, K. Kimura, N. Ieda, N. Inoue, Y. Uenoyama, H. Tsukamura, K. Maeda, F. Matsuda, & S. Ohkura. 2016. Immunohistochemical characterization of the arcuate Kisspeptin/Neurokinin B/dynorphin (KNDy) and preoptic kisspeptin neuronal populations in the hypothalamus during the estrous cycle in heifers. J. Reprod. Dev. 62:471–477. https://doi.org/10.1262/jrd.2016-075
Hermiz, H. N. & J. M. A. Hadad. 2020. Factors affecting reproductive traits in several breeds of dairy cattle In Iraq. Iraqi Journal Agricultural Sciences 51:629-636. https://doi.org/10.36103/ijas.v51i2.990
Hernández-Hernández, J. M., G. B. Martin, C. M. Becerril-Pérez, A. Pro-Martínez, C. Cortez-Romero, & J. Gallegos-Sánchez. 2021. Kisspeptin stimulates the pulsatile secretion of Luteinizing Hormone (LH) during postpartum anestrus in ewes undergoing continuous and restricted suckling. Animals 11:2656. https://doi.org/10.3390/ani11092656
Jamil, Z., S. S. Fatima, S. Arif, F. Alam, & R. Rehman. 2017. Kisspeptin and embryo implantation after ICSI. Reprod. Biomed. Online 34:147–53. https://doi.org/10.1016/j.rbmo.2016.11.004
Kafaji, S. S. A., J. A. Al-Sa’aidi, & K. K. Khudair. 2017. Reproductive hormones profile of Iraqi Awassi ewes immunized against synthetic inhibin-α subunit or steroid-free bovine follicular fluid. Iraqi Journal Veterinary Sciences 31:123-128. https://doi.org/10.33899/ijvs.2017.145609
Kanasaki, H., T. Tumurbaatar, Z. Tumurgan, A. Oride, H. Okada, & S. Kyo. 2021. Mutual interactions between GnRH and Kisspeptin in GnRH- and Kiss-1-expressing immortalized hypothalamic cell models. Reproductive Endocrinology 28:3380-3389. https://doi.org/10.1007/s43032-021-00695-z
Khafaji, S. S. O. 2018. Application of different progesterone protocols on some reproductive hormones during pregnancy in Awassi Ewes. Journal Pharmaceutical Sciences Research 10:1364-1368.
Khamas, D. J. 2011. Hormonal treatments of inactive ovaries in Iraqi cows and Buffaloes. Anbar J. Vet. Sci. 4:7-12.
Kükürt, A., M. Kuru, Ö. F. Başer, & M. Karapehlivan. 2020. Kisspeptin: Role in Female Infertility. In: Marsh C., editor. Sex Hormones in Reproductive. Endocrinology and Infertility. InTech p.1-12. https://doi.org/10.5772/intechopen.94925
Latif, R. & N. J. Rafique. 2015. Serum kisspeptin levels across different phases of the menstrual cycle and their correlation with serum oestradiol. Neth. J. Med. 73:175–178.
Leonardi, C. E. P., R. A. Carrasco, F. C. F. Dias, F. C. Zwiefelhofer, G. P. Adams, & J. Singh. 2022. Mechanism of LH release after peripheral administration of kisspeptin in cattle. PLoS One 17:e0278564. https://doi.org/10.1371/journal.pone.0278564
Leonardi, C. E. P., F. C. F. Dias, G. P. Adams, & J. Singh. 2018. Effect of Kisspeptin-10 on plasma luteinizing hormone concentrations and follicular dynamics during the luteal phase in cattle. Theriogenology 119:268-274. https://doi.org/10.1016/j.theriogenology.2018.06.023
Leonardi, C.E.P., F. C. Dias, G. P. Adams, & E. R. Araujo. 2020. Kisspeptin induces ovulation in heifers under low plasma progesterone concentrations. Theriogenology 141:26–34. https://doi.org/10.1016/j.theriogenology.2019.08.033
Macedo, G.G., R. D. Mingoti, E. O. Batista, B. M. Monteiro, L. M. Vieira, R. V. Barletta, M. C. Wiltbank, G. P. Nogueira, F. P. Rennó, J. R. Maio, & P. S. Baruselli. 2019. Profile of LH release in response to intramuscular treatment with kisspeptin in Bos indicus and Bos taurus prepubertal heifers. Theriogenology 125:64–70. https://doi.org/10.1016/j.theriogenology.2018.10.011
Macedo, G. G., E. O. S. Batista, G. M. G. D. Santos, M. J. D’Occhio, & P. S. Baruselli. 2021. Estradiol priming potentiates the kisspeptin-induced release of LH in ovariectomized cows. Animals 11:1236. https://doi.org/10.3390/ani11051236
Martins, J. P. N., D. Wang, N. Mu, G. F. Rossi, A. P. Martini, V. R. Martins, & J. R. Pursley. 2018. Level of circulating concentrations of progesterone during ovulatory follicle development affects timing of pregnancy loss in lactating dairy cows. J. Dairy Sci. 101:10505–10525. https://doi.org/10.3168/jds.2018-14410
Masumi, S., E. B. Lee, I. Dilower, S. Upadhyaya, V. P. Chakravarthi, P. K. Fields, & M. A. K. Rumi. 2022. The role of Kisspeptin signaling in Oocyte maturation. Front. Endocrinol. 13:917464. https://doi.org/10.3389/fendo.2022.917464
Mohammadzadeh, S., F.Moradian, S. Yeganeh, B. Falahatkar, & S. Milla. 2020. Design, production and purification of a novel recombinant gonadotropin-releasing hormone associated peptide as a spawning inducing agent for fish. Protein Expr. Purif. 166:105510. https://doi.org/10.1016/j.pep.2019.105510
Naniwa, Y., K. Nakatsukasa, S. Setsuda, S. Oishi, N. Fujii, F. Matsuda, Y. Uenoyama, H. Tsukamura, K. Maeda, & S. Ohkura. 2013. Effects of full-length kisspeptin administration on follicular development in Japanese Black beef cows. J. Reprod. Dev. 59:588–594. https://doi.org/10.1262/jrd.2013-064
Narayanaswamy, Sh., C. N. Jayasena, N. Ng, R. Ratnasabapathy, J. K. Prague, D. Papadopoulou, A. Abbara, A. N. Comninos, P. Bassett, S. R. Bloom, J. D. Veldhuis, & W. S. Dhillo. 2016. Subcutaneous infusion of kisspeptin-54 stimulates gonadotrophin release in women and the response correlates with basal oestradiol levels. Clin. Endocrinol. 84:939–945. https://doi.org/10.1111/cen.12977
Picard-Hagen, N., G. Lhermie, S. Florentin, D. Merle, P. Frein, & V. Gayrard. 2015. Effect of gonadorelin, lecirelin, and buserelin on LH surge, ovulation, and progesterone in cattle. Theriogenology 84:177-183. https://doi.org/10.1016/j.theriogenology.2015.03.004
Rehman, R., A. Zafar, A. Ali, M. Baig, & F. Alam. 2020. Impact of serum and follicular fluid kisspeptin and estradiol on oocyte maturity and endometrial thickness among unexplained infertile females during ICSI. PLoS One 15:e0239142. https://doi.org/10.1371/journal.pone.0239142
Ritter, C., A. Beaver, & M. A. von Keyserlingk. 2019. The complex relationship between welfare and reproduction in cattle. Reprod. Domest. Anim. 54:29-37. https://doi.org/10.1111/rda.13464
SAS, SAS/STAT. 2001. Users Guide for Personal Computer. Release 6.18. SAS Institute Inc., New York, USA.
Sébert, M. E., D. Lomet, S. B. Saïd, P. Monget, C. Briant, R. J. Scaramuzzi, & A. Caraty. 2010. Insights into the mechanism by which kisspeptin stimulates a preovulatory LH surge and ovulation in seasonally acyclic ewes: potential role of estradiol. Domest. Anim. Endocrinol. 38:289–298. https://doi.org/10.1016/j.domaniend.2010.01.001
Shashank, C. G., N. A. Kumar, & P. S. Banakar. 2018. Mystic effects of kisspeptin in reproduction of livestock. Int. J. Curr. Microbiol. Appl. Sci. 7:2140-2147. https://doi.org/10.20546/ijcmas.2018.707.251
Stevenson, J. S. & S. L. Pulley. 2016. Feedback effects of estradiol and progesterone on ovulation and fertility of dairy cows after gonadotropin-releasing hormone-induced release of luteinizing hormone. J. Dairy Sci. 99:3003–3015. https://doi.org/10.3168/jds.2015-10091
Uenoyama, Y., M. Nagae, H. Tsuchida, N. Inoue, & H. Tsukamura. 2021. Role of KNDy neurons expressing kisspeptin, neurokinin B, and dynorphin A as a GnRH pulse generator controlling mammalian reproduction. Front. Endocrinol. 12:1-12. https://doi.org/10.3389/fendo.2021.724632
Ulasov, I. V., A. V. Borovjagin, P. Timashev, M. Cristofanili, & D. R. Welch. 2019. KISS1 in breast cancer progression and autophagy. Cancer Metastasis Rev. 38:493-506. https://doi.org/10.1007/s10555-019-09814-4
Yeo, S. & W.H. Colledge. 2018. The role of Kiss1 neurons as integrators of endocrine, metabolic, and environmental factors in the hypothalamic–pituitary–gonadal axis. Front. Endocrinol. 9:351502. https://doi.org/10.3389/fendo.2018.00188
Zhao, C., S. Shu, Y. Bai, D. Wang, C. Xia, & C. Xu. 2019. Plasma protein comparison between dairy cows with inactive ovaries and estrus. Sci. Rep. 9:1-11. https://doi.org/10.1038/s41598-019-49785-8
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.