Exploring the Impact of Kisspeptin-10 on the Fecundity Traits of Anestrus Iraqi Cows

S. S. Khafaji

Abstract

The inactive ovaries of cattle caused a significant economic loss, so the current study is intended to recover and enhance the fertility of dairy cattle suffering from anestrus by kisspeptin-10. Forty Holstein Friesian cows, aged 3.5-6.8 years with inactive ovaries for 60-70 days of postpartum, were distributed randomly into four equal groups. The control (C) group administered 5 mL intramuscularly (I.M) of normal saline, Gn group administered 0.5 mg/animal I.M of GnRH. K1 and K2 were administered with 6 μg/kg BW I.M and 12 μg/kg BW I.M of kisspeptin-10, respectively. After heat signs were detected, artificial insemination was performed. Blood samples were collected at 0, 2, 6, 24, and 72 hours post-hormonal injection to estimate fertility hormones, and fecundity features were demonstrated after hormonal treatment and after twelve months. The current results noted a significant (p<0.05) increment in estradiol, FSH, and LH in K1 and K2 cows compared to Gn and C at 6-24 h post hormonal treatment, while progesterone showed a significant (p<0.05) drop in K1, Gn, and K2 in comparison with C. Also, the calving and fertility rates were significantly higher (p<0.05) in K2 and K1 compared with Gn and C after hormonal treatment and after one year. The kisspeptin-10 injection improved the fertility of anestrus cows by enhancing the reproductive hormonal profile and fertility traits for long-term effects and without requiring a second kisspeptin-10 injection in Holstein Friesian cows; therefore, administration of kisspeptin-10 can be regarded as an alternative application of using some hormones like GnRH.

References

Abdulkareem, T. A., S. J. Muhammad, & A. N. Yousif. 2021. Effect of kispeptin-10 as an alternative to eCG in estrus synchronization protocol on improving the reproductive performance of Karadi ewes. Iraqi Journal Agricultural Sciences 52:535-546. https://doi.org/10.36103/ijas.v52i3.1340

Abdulkareem, T. A., S. A. Al-Sharifi, S. M. Eidan, & R. G. Sasser. 2012. Reproductive and productive performance of Iraqi buffaloes as influenced of pre-mating and pre-calving concentrate supplementation. Pak. Vet. J. 32:345-348.

AL-Ameri, M. H. 2019. Comparison of hormonal treatment kisspeptin with GnRH and hCG on the some reproductive performance of cyprus, does during non-breeding. Adv. Anim. Vet. Sci. 7:537-542. https://doi.org/10.17582/journal.aavs/2019/7.7.537.542

Al-Hamedawi, T. M., A. H. Ghafel, & S. M. AL-Shammary. 2016. Induction of fertile estrus by using CIDR and PMSG in anestrous lactating Holstein-Friesian cows suffering from inactive ovaries. Euphrates Journal Agricultural Science 9:1-7.

Al-Khawaja, A. K., S. A. Matti, R. F. Asadi, K. M. Mokhtar, & S. H. Aboona. 1978. The Composition and Nutritive Value of Iraqi Feed Stuff. Division Publication. Ministry of Agriculture. Iraq.

AL-Nuaimi, A. J., A. A. Alzahid, T. A. Alrubaye, A. R. Abid, R. A. Jawad, N. M. Al-Khafaji, J. K. Al-Sabbagh, & M. S. Hassan. 2020. Effect of Progesterone and GnRH treatment on non-functional ovaries in Holstein cows after calving in Babylon province. IOP Conf. Ser. Earth Environ. Sci. 553:012021. https://doi.org/10.1088/1755-1315/553/1/012021

Amin, Y. A., N. A. Youssef, A. Z. Mahmoud, M. Salah, A. M. Khalil, O. Shanab, & A. S. Hassaneen. 2022. Impact of polyherbal formulation oral administration on the estrus response, luteal activity, and oxidative stress in postpartum dairy cows with ovarian subfunction. Vet. World 15:360-367. https://doi.org/10.14202/vetworld.2022.360-367

Azizi, V., S. Oryan, & H. Khazali. 2020. The effect of intracerebroventricular administration of neuropeptide Y on reproductive axis function in the male Wistar rats: Involvement of hypothalamic KiSS1/GPR54 system. Vet. Res. Forum 11:249–256.

Beltramo, M. & C. Decourt. 2018. Towards new strategies to manage livestock reproduction using kisspeptin analogs. Theriogenology 112:2–10. https://doi.org/10.1016/j.theriogenology.2017.08.026

Chacher, M. F. A., A. Çolak, & A. Hayirli. 2017. Efficacy of repeatedly used CIDR device in cattle reproduction: A metaanalysis review of progesterone concentration and conception rate. Turk. J. Vet. Anim. Sci. 41:692-697. https://doi.org/10.3906/vet-1706-75

Daniel, J. A., C. F. Foradori, B. K. Whitlock, & J. L. Sartin. 2015. Reproduction and beyond, kisspeptin in ruminants. J. Anim. Sci. Biotechnol. 6:23. https://doi.org/10.1186/s40104-015-0021-4

Fratangelo, F., M. V. Carriero, & M. L. Motti. 2018. Controversial role of kisspeptins/KiSS-1R signaling system in tumor development. Front. Endocrinol. 9:192. https://doi.org/10.3389/fendo.2018.00192

Galina, C. S. & M. Geffroy. 2023. Dual-purpose cattle raised in tropical conditions: what are their shortcomings in sound productive and reproductive function? Animals 13:2224. https://doi.org/10.3390/ani13132224

Gogaev, O., G. Y. Ostaev, B. Khosiev, N. Kravchenko, D. Kondratiev, & E. Nekrasova. 2019. Zootechnical and management accounting factors of beef cattle: Cost optimization. Res. J. Pharm. Biol. Chem. Sci. 10:221-231.

Hameed, W. S. & H. A. Alsalim. 2022. Ultrasonographical and hormonal comparative between true and postpartum anestrus of cows in south of Iraq. Int. J. Health Sci. 6:7909–7925. https://doi.org/10.53730/ijhs.v6nS6.12183

Hassaneen, A., Y. Naniwa, Y. Suetomi, S. Matsuyama, K. Kimura, N. Ieda, N. Inoue, Y. Uenoyama, H. Tsukamura, K. Maeda, F. Matsuda, & S. Ohkura. 2016. Immunohistochemical characterization of the arcuate Kisspeptin/Neurokinin B/dynorphin (KNDy) and preoptic kisspeptin neuronal populations in the hypothalamus during the estrous cycle in heifers. J. Reprod. Dev. 62:471–477. https://doi.org/10.1262/jrd.2016-075

Hermiz, H. N. & J. M. A. Hadad. 2020. Factors affecting reproductive traits in several breeds of dairy cattle In Iraq. Iraqi Journal Agricultural Sciences 51:629-636. https://doi.org/10.36103/ijas.v51i2.990

Hernández-Hernández, J. M., G. B. Martin, C. M. Becerril-Pérez, A. Pro-Martínez, C. Cortez-Romero, & J. Gallegos-Sánchez. 2021. Kisspeptin stimulates the pulsatile secretion of Luteinizing Hormone (LH) during postpartum anestrus in ewes undergoing continuous and restricted suckling. Animals 11:2656. https://doi.org/10.3390/ani11092656

Jamil, Z., S. S. Fatima, S. Arif, F. Alam, & R. Rehman. 2017. Kisspeptin and embryo implantation after ICSI. Reprod. Biomed. Online 34:147–53. https://doi.org/10.1016/j.rbmo.2016.11.004

Kafaji, S. S. A., J. A. Al-Sa’aidi, & K. K. Khudair. 2017. Reproductive hormones profile of Iraqi Awassi ewes immunized against synthetic inhibin-α subunit or steroid-free bovine follicular fluid. Iraqi Journal Veterinary Sciences 31:123-128. https://doi.org/10.33899/ijvs.2017.145609

Kanasaki, H., T. Tumurbaatar, Z. Tumurgan, A. Oride, H. Okada, & S. Kyo. 2021. Mutual interactions between GnRH and Kisspeptin in GnRH- and Kiss-1-expressing immortalized hypothalamic cell models. Reproductive Endocrinology 28:3380-3389. https://doi.org/10.1007/s43032-021-00695-z

Khafaji, S. S. O. 2018. Application of different progesterone protocols on some reproductive hormones during pregnancy in Awassi Ewes. Journal Pharmaceutical Sciences Research 10:1364-1368.

Khamas, D. J. 2011. Hormonal treatments of inactive ovaries in Iraqi cows and Buffaloes. Anbar J. Vet. Sci. 4:7-12.

Kükürt, A., M. Kuru, Ö. F. Başer, & M. Karapehlivan. 2020. Kisspeptin: Role in Female Infertility. In: Marsh C., editor. Sex Hormones in Reproductive. Endocrinology and Infertility. InTech p.1-12. https://doi.org/10.5772/intechopen.94925

Latif, R. & N. J. Rafique. 2015. Serum kisspeptin levels across different phases of the menstrual cycle and their correlation with serum oestradiol. Neth. J. Med. 73:175–178.

Leonardi, C. E. P., R. A. Carrasco, F. C. F. Dias, F. C. Zwiefelhofer, G. P. Adams, & J. Singh. 2022. Mechanism of LH release after peripheral administration of kisspeptin in cattle. PLoS One 17:e0278564. https://doi.org/10.1371/journal.pone.0278564

Leonardi, C. E. P., F. C. F. Dias, G. P. Adams, & J. Singh. 2018. Effect of Kisspeptin-10 on plasma luteinizing hormone concentrations and follicular dynamics during the luteal phase in cattle. Theriogenology 119:268-274. https://doi.org/10.1016/j.theriogenology.2018.06.023

Leonardi, C.E.P., F. C. Dias, G. P. Adams, & E. R. Araujo. 2020. Kisspeptin induces ovulation in heifers under low plasma progesterone concentrations. Theriogenology 141:26–34. https://doi.org/10.1016/j.theriogenology.2019.08.033

Macedo, G.G., R. D. Mingoti, E. O. Batista, B. M. Monteiro, L. M. Vieira, R. V. Barletta, M. C. Wiltbank, G. P. Nogueira, F. P. Rennó, J. R. Maio, & P. S. Baruselli. 2019. Profile of LH release in response to intramuscular treatment with kisspeptin in Bos indicus and Bos taurus prepubertal heifers. Theriogenology 125:64–70. https://doi.org/10.1016/j.theriogenology.2018.10.011

Macedo, G. G., E. O. S. Batista, G. M. G. D. Santos, M. J. D’Occhio, & P. S. Baruselli. 2021. Estradiol priming potentiates the kisspeptin-induced release of LH in ovariectomized cows. Animals 11:1236. https://doi.org/10.3390/ani11051236

Martins, J. P. N., D. Wang, N. Mu, G. F. Rossi, A. P. Martini, V. R. Martins, & J. R. Pursley. 2018. Level of circulating concentrations of progesterone during ovulatory follicle development affects timing of pregnancy loss in lactating dairy cows. J. Dairy Sci. 101:10505–10525. https://doi.org/10.3168/jds.2018-14410

Masumi, S., E. B. Lee, I. Dilower, S. Upadhyaya, V. P. Chakravarthi, P. K. Fields, & M. A. K. Rumi. 2022. The role of Kisspeptin signaling in Oocyte maturation. Front. Endocrinol. 13:917464. https://doi.org/10.3389/fendo.2022.917464

Mohammadzadeh, S., F.Moradian, S. Yeganeh, B. Falahatkar, & S. Milla. 2020. Design, production and purification of a novel recombinant gonadotropin-releasing hormone associated peptide as a spawning inducing agent for fish. Protein Expr. Purif. 166:105510. https://doi.org/10.1016/j.pep.2019.105510

Naniwa, Y., K. Nakatsukasa, S. Setsuda, S. Oishi, N. Fujii, F. Matsuda, Y. Uenoyama, H. Tsukamura, K. Maeda, & S. Ohkura. 2013. Effects of full-length kisspeptin administration on follicular development in Japanese Black beef cows. J. Reprod. Dev. 59:588–594. https://doi.org/10.1262/jrd.2013-064

Narayanaswamy, Sh., C. N. Jayasena, N. Ng, R. Ratnasabapathy, J. K. Prague, D. Papadopoulou, A. Abbara, A. N. Comninos, P. Bassett, S. R. Bloom, J. D. Veldhuis, & W. S. Dhillo. 2016. Subcutaneous infusion of kisspeptin-54 stimulates gonadotrophin release in women and the response correlates with basal oestradiol levels. Clin. Endocrinol. 84:939–945. https://doi.org/10.1111/cen.12977

Picard-Hagen, N., G. Lhermie, S. Florentin, D. Merle, P. Frein, & V. Gayrard. 2015. Effect of gonadorelin, lecirelin, and buserelin on LH surge, ovulation, and progesterone in cattle. Theriogenology 84:177-183. https://doi.org/10.1016/j.theriogenology.2015.03.004

Rehman, R., A. Zafar, A. Ali, M. Baig, & F. Alam. 2020. Impact of serum and follicular fluid kisspeptin and estradiol on oocyte maturity and endometrial thickness among unexplained infertile females during ICSI. PLoS One 15:e0239142. https://doi.org/10.1371/journal.pone.0239142

Ritter, C., A. Beaver, & M. A. von Keyserlingk. 2019. The complex relationship between welfare and reproduc­tion in cattle. Reprod. Domest. Anim. 54:29-37. https://doi.org/10.1111/rda.13464

SAS, SAS/STAT. 2001. Users Guide for Personal Computer. Release 6.18. SAS Institute Inc., New York, USA.

Sébert, M. E., D. Lomet, S. B. Saïd, P. Monget, C. Briant, R. J. Scaramuzzi, & A. Caraty. 2010. Insights into the mechanism by which kisspeptin stimulates a preovulatory LH surge and ovulation in seasonally acyclic ewes: potential role of estradiol. Domest. Anim. Endocrinol. 38:289–298. https://doi.org/10.1016/j.domaniend.2010.01.001

Shashank, C. G., N. A. Kumar, & P. S. Banakar. 2018. Mystic effects of kisspeptin in reproduction of livestock. Int. J. Curr. Microbiol. Appl. Sci. 7:2140-2147. https://doi.org/10.20546/ijcmas.2018.707.251

Stevenson, J. S. & S. L. Pulley. 2016. Feedback effects of estradiol and progesterone on ovulation and fertility of dairy cows after gonadotropin-releasing hormone-induced release of luteinizing hormone. J. Dairy Sci. 99:3003–3015. https://doi.org/10.3168/jds.2015-10091

Uenoyama, Y., M. Nagae, H. Tsuchida, N. Inoue, & H. Tsukamura. 2021. Role of KNDy neurons expressing kisspeptin, neurokinin B, and dynorphin A as a GnRH pulse generator controlling mammalian reproduction. Front. Endocrinol. 12:1-12. https://doi.org/10.3389/fendo.2021.724632

Ulasov, I. V., A. V. Borovjagin, P. Timashev, M. Cristofanili, & D. R. Welch. 2019. KISS1 in breast cancer progression and autophagy. Cancer Metastasis Rev. 38:493-506. https://doi.org/10.1007/s10555-019-09814-4

Yeo, S. & W.H. Colledge. 2018. The role of Kiss1 neurons as integrators of endocrine, metabolic, and environmental factors in the hypothalamic–pituitary–gonadal axis. Front. Endocrinol. 9:351502. https://doi.org/10.3389/fendo.2018.00188

Zhao, C., S. Shu, Y. Bai, D. Wang, C. Xia, & C. Xu. 2019. Plasma protein comparison between dairy cows with inactive ovaries and estrus. Sci. Rep. 9:1-11. https://doi.org/10.1038/s41598-019-49785-8

Authors

S. S. Khafaji
sura.saif@uokerbala.edu.iq (Primary Contact)
KhafajiS. S. (2024). Exploring the Impact of Kisspeptin-10 on the Fecundity Traits of Anestrus Iraqi Cows. Tropical Animal Science Journal, 47(1), 15-24. https://doi.org/10.5398/tasj.2024.47.1.15

Article Details