The Silage Quality of Pennisetum purpureum Cultivar Gamma Umami Mixed with Calliandra calothyrsus and Lactiplantibacillus plantarum
Abstract
This study aimed to determine the effect of Calliandra calothyrsus supplementation and inoculation of Lactiplantibacillus plantarum (L. plantarum) on Penisetum purpureum cv. Gamma Umami grass fermentative and chemical quality and nutrient degradability. The study used a completely randomized design with 3 × 3 factorial patterns. The first factor was Calliandra supplementation levels at 10%, 20%, and 30%; the second was L. plantarum inoculation levels at 0%, 2%, and 4%. The variables measured included chemical fermentation profiles, chemical composition, and rumen fermentation and degradability parameters. The result showed that a higher level of C. calothyrsus supplementation concomitant increased silage pH and NH3-N concentration (p<0.05), while L. plantarum inoculation significantly decreased the silage pH and ammonia concentration (p<0.05). The silage contents of dry matter, organic matter, crude protein, and ether extract in silage significantly (p<0.05) increased. Inoculation of L. plantarum decreased (p<0.05) crude fiber, ether extract, and total tannin content of silage. The total volatile fatty acids, acetate, propionate concentrations, and rumen microbial protein synthesis were significantly increased with Calliandra supplementation (p<0.05). L. plantarum inoculation treatment only increased the proportion of acetate (p<0.05) and tended to increase the volatile fatty acids of rumen fluid, the proportion of acetate, propionate, and butyrate. The rumen ammonia concentration decreased with Calliandra supplementation and L. plantarum inoculation. It is concluded that 30% Calliandra supplementation and 2% L. plantarum inoculation and their combination were the treatments that produced the best chemical fermentation, rumen fermentation, and degradability parameters.
References
Adesoji, A. T., A. A. Ogunjobi, O. E. Fagade, & O. J. Babayemi. 2010. Effect of Lactobacillus plantarum starter culture on the microbial succession, chemical composition, aerobic stability and acceptability by ruminant of fermented Panicum maximum grass. Au Journal Technology 14:11–24.
Ammar, E. M. & G. P. Philippidis. 2021. Fermentative production of propionic acid: prospects and limitations of microorganisms and substrates. Appl. Microbiol. Biotechnol. 105:6199–6213. https://doi.org/10.1007/s00253-021-11499-1
AOAC. 2005. Official Methods of Analysis of AOAC International. 18th ed. The Association of Official Analytical Chemist, Washington, DC.
Ávila, C. L. S. & B. F. Carvalho. 2020. Silage fermentation—updates focusing on the performance of micro-organisms. J. Appl. Microbiol. 128:966–984. https://doi.org/10.1111/jam.14450
Boufaïed, H., P. Y. Chouinard, G. F. Tremblay, H. V. Petit, R. Michaud, & G. Bélanger. 2003. Fatty acids in forages. I. Factors affecting concentrations. Can. J. Anim. Sci. 83:501–511. https://doi.org/10.4141/A02-098
Bureenok, S., K. Sisaath, C. Yuangklang, K. Vasupen, & J. T. Schonewille. 2016. Ensiling characteristics of silages of Stylo legume (Stylosanthes guianensis), Guinea grass (Panicum maximum) and their mixture, treated with fermented juice of lactic bacteria, and feed intake and digestibility in goats of rations based on these silages. Small Rumin. Res. 134:84–89. https://doi.org/10.1016/j.smallrumres.2015.12.006
Cao, Y., Y. Cai, T. Takahashi, N. Yoshida, M. Tohno, R. Uegaki, K. Nonaka, & F. Terada. 2011. Effect of lactic acid bacteria inoculant and beet pulp addition on fermentation characteristics and in vitro ruminal digestion of vegetable residue silage. J. Dairy Sci. 94:3902–3912. https://doi.org/10.3168/jds.2010-3623
Chaney, A. L. & E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130–132. https://doi.org/10.1093/clinchem/8.2.130
Copani, G., C. Ginane, A. Le Morvan, & V. Niderkorn. 2014. Bioactive forage legumes as a strategy to improve silage quality and minimise nitrogenous losses. Anim. Prod. Sci. 54:1826–1829. https://doi.org/10.1071/AN14252
Dewhurst, R. J., W. J. Fisher, J. K. S. Tweed, & R. J. Wilkins. 2003. Comparison of grass and legume silages for milk production . 1 . Production responses with different levels of concentrate. J. Dairy Sci. 86:2598–2611. https://doi.org/10.3168/jds.S0022-0302(03)73855-7
Dilaga, S. H., R. A. Putra, A. N. T. Pratama, O. Yanuarianto, M. Amin, & Suhubdy. 2022. Nutritional quality and in vitro digestibility of fermented rice bran based on different types and doses of inoculants. J. Adv. Vet. Anim. Res. 9:625–633. https://doi.org/10.5455/javar.2022.i632
Dong, J., S. Li, X. Chen, Z. Sun, Y. Sun, Y. Zhen, G. Qin, T. Wang, N. Demelash, & X. Zhang. 2022. Effects of Lactiplantibacillus plantarum inoculation on the quality and bacterial community of whole-crop corn silage at different harvest stages. Chem. Biol. Technol. Agric. 9:57. https://doi.org/10.1186/s40538-022-00326-y
Filípek, J. & R. Dvořák. 2009. Determination of the volatile fatty acid content in the rumen liquid: Comparison of gas chromatography and capillary isotachophoresis. Acta Vet. Brno. 78:627–633. https://doi.org/10.2754/avb200978040627
Filya, I. 2003. The effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages. J. Dairy Sci. 86:3575–3581. https://doi.org/10.3168/jds.S0022-0302(03)73963-0
France, J. & J. Dijkstra. 2005. Volatille Fatty Acid Production. In: Quantitative Aspect of Ruminant Digestion and Metabolism. 2nd ed. J. Dijkstra, J. M. Forbes, & J. France, ed. CABI Publishing, Wallingfords. https://doi.org/10.1079/9780851998145.0000
Gao, L., X. Guo, S. Wu, D. Chen, L. Ge, W. Zhou, Q. Zhang, & R. Pian. 2022. Tannin tolerance lactic acid bacteria screening and their effects on fermentation quality of stylo and soybean silages. Front. Microbiol. 13:991387. https://doi.org/10.3389/fmicb.2022.991387
Giang, N. T. T., M. Wanapat, K. Phesatcha, & S. Kang. 2016. Level of Leucaena leucocephala silage feeding on intake, rumen fermentation, and nutrient digestibility in dairy steers. Trop. Anim. Health Prod. 48:1057–1064. https://doi.org/10.1007/s11250-016-1060-3
Gonzalez-Garcia, R. A., T. McCubbin, L. Navone, C. Stowers, L. K. Nielsen, & E. Marcellin. 2017. Microbial propionic acid production. Fermentation 3:21. https://doi.org/10.3390/fermentation3020021
Guo, X. S., D. J. Undersander, & D. K. Combs. 2013. Effect of Lactobacillus inoculants and forage dry matter on the fermentation and aerobic stability of ensiled mixed-crop tall fescue and meadow fescue. J. Dairy Sci. 96:1735–1744. https://doi.org/10.3168/jds.2045-5786
Gusha, J., T. E. Halimani, N. T. Ngongoni, & S. Ncube. 2015. Effect of feeding cactus-legume silages on nitrogen retention, digestibility and microbial protein synthesis in goats. Anim. Feed Sci. Technol. 206:1–7. https://doi.org/10.1016/j.anifeedsci.2015.04.017
Haghparvar, R., K. Shojaian, E. Rowghani, S. Parsaei, & M. Yousef Ellahi. 2012. The effects of Lactobacillus plantarum on chemical composition, rumen degradability, in vitro gas production and energy content of whole-plant corn ensiled at different stages of maturity. Iran. J. Vet. Res. 13:8–15. https://doi.org/10.22099/IJVR.2012.14
Hapsari, S. S., Suryahadi, & H. A. Sukria. 2016. Improvement on the nutritive quality of napier grass silage through inoculation of Lactobacillus plantarum and formic acid. Med. Pet. 39:125–133. https://doi.org/10.5398/medpet.2016.39.2.125
Hristov, A. N., J. Oh, J. L. Firkins, J. Dijkstra, E. Kebreab, G. Waghorn, H. P. S. Makkar, A. T. Adesogan, W. Yang, C. Lee, P. J. Gerber, B. Henderson, & J. M. Tricarico. 2013. Special topics-Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. J. Anim. Sci. 91:5070–5094. https://doi.org/10.2527/jas.2013-6584
Hu, W., R. J. Schmidt, E. E. McDonell, C. M. Klingerman, & L. Kung. 2009. The effect of Lactobacillus buchneri 40788 or Lactobacillus plantarum MTD-1 on the fermentation and aerobic stability of corn silages ensiled at two dry matter contents. J. Dairy Sci. 92:3907–3914. https://doi.org/10.3168/jds.2008-1788
Jayanegara, A., H. P. S. Makkar, & K. Becker. 2009. In vitro methane emission and rumen fermentation of Hay diet contained purified tannins at low concentration. Med. Pet. 32:185–195.
Kariyani, L. A., Dahlanuddin, T. Panjaitan, R. A. Putra, K. Harper, & D. Poppi. 2021. Increasing the level of cassava chips or cassava pilp in leucaena based diets increases feed intake and live weight gain of Bali bulls. Livest. Res. Rural Dev. 33:Article #115.
Kim, D., K. D. Lee, & C. Choi. 2021. Role of LAB in silage fermentation: Effect on nutritional quality and organic acid production—An overview. AIMS Agriculture Food 6:216–234. https://doi.org/10.3934/agrfood.2021014
Kim, D. H., S. M. Amanullah, H. Lee, Y. Joo, H. Yun, S. S. Lee, Y. Song, H. Kim, & S. C. Kim. 2015. Effects of L. plantarum application on chemical composition, fermentation indices and fatty acid profiles of barley silage. Journal Agriculture Life Science 49:157–167. https://doi.org/10.14397/jals.2015.49.5.157
Kim, H. S., O. K. Han, S. C. Kim, M. J. Kim, & Y. S. Kwak. 2017a. Screening and investigation Lactobacillius spp. to improve Secale cereale silage quality. Anim. Sci J. 88:1538–1546. https://doi.org/10.1111/asj.12781
Kim, J. G., J. S. Ham, Y. W. Li, H. S. Park, C. S. Huh, & B. C. Park. 2017b. Development of a new lactic acid bacterial inoculant for fresh rice straw silage. Asian-Australas. J. Anim. Sci. 30:950–956. https://doi.org/10.5713/ajas.17.0287
Kung, L., R. D. Shaver, R. J. Grant, & R. J. Schmidt. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101:4020–4033. https://doi.org/10.3168/jds.2017-13909
Li, F., Z. Ding, A. T. Adesogan, W. Ke, Y. Jiang, J. Bai, S. Mudassar, Y. Zhang, W. Huang, & X. Guo. 2020. Effects of class iia bacteriocin‐producing Lactobacillus species on fermentation quality and aerobic stability of alfalfa silage. Animals 10:1–13. https://doi.org/10.3390/ani10091575
Li, F., S. Usman, W. Huang, M. Jia, Z.A. Kharazian, T. Ran, F. Li, Z. Ding, & X. Guo. 2023. Effects of inoculating feruloyl esterase-producing Lactiplantibacillus plantarum A1 on ensiling characteristics, in vitro ruminal fermentation and microbiota of alfalfa silage. J. Anim. Sci. Biotechnol. 14:43. https://doi.org/10.1186/s40104-023-00837-0
Li, H., T. Wang, M. Tahir, J. Zhang, J. Sun, T. Xia, F. Huang, Y. Liu, Z. Liu, & J. Zhong. 2022. Influence of Lactobacillus plantarum inoculation on the silage quality of intercropped Lablab purpureus and sweet sorghum grown in saline-alkaline region. Front. Microbiol. 13:1059551. https://doi.org/10.3389/fmicb.2022.1059551
Li, M., X. Zi, H. Zhou, R. Lv, J. Tang, & Y. Cai. 2019. Silage fermentation and ruminal degradation of cassava foliage prepared with microbial additive. AMB Express 9:180. https://doi.org/10.1186/s13568-019-0906-2
Lima, R., M. Lourenço, R. F. Díaz, A. Castro, & V. Fievez. 2010. Effect of combined ensiling of sorghum and soybean with or without molasses and lactobacilli on silage quality and in vitro rumen fermentation. Anim. Feed Sci. Technol. 155:122–131. https://doi.org/10.1016/j.anifeedsci.2009.10.008
Liu, Q., M. Chen, J. Zhang, S. Shi, & Y. Cai. 2012. Characteristics of isolated lactic acid bacteria and their effectiveness to improve stylo (Stylosanthes guianensis Sw.) silage quality at various temperatures. Anim. Sci. J. 83:128-135. https://doi.org/10.1111/j.1740-0929.2011.00937.x
Liu, Y., T. Chen, R. Sun, X. Zi, & M. Li. 2022. Effects of Lactobacillus plantarum on silage fermentation and bacterial community of three tropical forages. Front. Anim. Sci. 3:878909. https://doi.org/10.3389/fanim.2022.878909
McDonald, P., R. Edwards, J. F. Greenhalgh, C. Morgan, L. Sinclair, & R. Wilkinson. 2011. Animal Nutrition. 7th ed. Prentice Hall, Harlow.
McDonald, P., A. Henderson, & S. J. Heron. 1991. The Biochemistry of Silage. 2nd ed. Chalombe Publications, Marlow, Buckinghamshire, UK.
McDougall, E. I. 1948. The composition and output of sheep’s saliva. Biochem. J. 43:100–109. https://doi.org/10.1042/bj0430099
Min, B. R., G. T. Attwood, K. Reilly, W. Sun, J. S. Peters, T. N. Barry, & W. C. McNabb. 2002. Lotus corniculatus condensed tannins decrease in vivo populations of proteolytic bacteria and affect nitrogen metabolism in the rumen of sheep. Can. J. Microbiol. 48:911–921. https://doi.org/10.1139/w02-087
Mohammed, R., D. M. Stevenson, K. A. Beauchemin, R. E. Muck, & P. J. Weimer. 2012. Changes in ruminal bacterial community composition following feeding of alfalfa ensiled with a lactic acid bacterial inoculant. J. Dairy Sci. 95:328–339. https://doi.org/10.3168/jds.2011-4492
Mu, L., Z. Xie, L. Hu, G. Chen, & Z. Zhang. 2020. Cellulase interacts with Lactobacillus plantarum to affect chemical composition, bacterial communities, and aerobic stability in mixed silage of high-moisture amaranth and rice straw. Bioresour. Technol. 315:123772. https://doi.org/10.1016/j.biortech.2020.123772
Muhandiram, N. P. K., M. W. Humphreys, R. Fychan, J. W. Davies, R. Sanderson, & C. L. Marley. 2023. Designing agricultural grasses to help mitigate proteolysis during ensiling to optimize protein feed provisions for livestock. Food. Energy Secur. 12:1–12. https://doi.org/10.1002/fes3.475
Mudhita, I. K., N. Umami, S. P. S. Budhi, E. Baliarti, C. T. Noviandi, Kustono, I. G. S. Budisatria, & J. Wattimena. 2016. Effect of Bali cattle urine on legume cover crop puero (Pueraria javanica) productivity on an east borneo oil palm plantation. Pak. J. Nutr. 15:406–411. https://doi.org/10.3923/pjn.2016.406.411
Nahm, K. H. 1992. Practical Guide to Feed, Forage and Water Analysis. Yoo Han Publisher, Seoul.
Ni, K., J. Zhao, B. Zhu, R. Su, Y. Pan, J. Ma, G. Zhou, Y. Tao, X. Liu, & J. Zhong. 2018. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresour. Technol. 265:563–567. https://doi.org/10.1016/j.biortech.2018.05.097
Ningrat, R. W. S., M. Zain, Erpomen, & H. Suryani. 2016. Effects of doses and different sources of tannins on in vitro ruminal methane, volatile fatty acids production and on bacteria and protozoa populations. Asian J. Anim Sci. 11:47–53. https://doi.org/10.3923/ajas.2017.47.53
Noviandi, C. T., K. Neal, J. S. Eun, M. D. Peel, B. L. Waldron, D. R. ZoBell, & B. R. Min. 2014. Comparison of alfalfa, birdsfoot trefoil, and cicer milkvetch in combination with 25, 50, or 75% tall fescue in a continuous-culture system. Prof. Anim. Sci. 30:23–32. https://doi.org/10.15232/S1080-7446(15)30078-4
Paradhipta, D. H. V, Y. H. Joo, H. J. Lee, S. S. Lee, D. H. Kim, J. D. Kim, & S. C. Kim. 2019. Effects of inoculant application on fermentation quality and rumen digestibility of high moisture sorghum-sudangrass silage. J. Appl. Anim. Res. 47:486–491. https://doi.org/10.1080/09712119.2019.1670667
Patra, A. K. 2012. Dietary Phytochemicals and Microbes. Springer Science+Business Media Dordrecht. https://doi.org/10.1007/978-94-007-3926-0
Plummer, D. T. 1971. An Introduction Practical Biochemistry. McGraw-Hill Book Company LTD, Bombay, New Delhi.
Putra, R. A., C. T Noviandi, & N. Umami. 2017. Digestibility and Ruminal Fermentation Characteristic of Native Grass Silage Supplemented with Different Levels of Leucaena leucocephala. p. 189–195 in Proceeding of The 7th International Sem. Trop. Anim. Prod, Yogyakarta.
Qu, Y., W. Jiang, G. Yin, C. Wei, & J. Bao. 2013. Effects of feeding corn-lablab bean mixture silages on nutrient apparent digestibility and performance of dairy cows. Asian-Australas. J. Anim. Sci. 26:509–516. https://doi.org/10.5713/ajas.2012.12531
Raes, K., S. De Smet, & D. Demeyer. 2004. Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: A review. Anim. Feed Sci. Technol. 113:199–221. https://doi.org/10.1016/j.anifeedsci.2003.09.001
Sanjaya, H. B., N. Umami, A. Astuti, Muhlisin, B. Suwignyo, M. M. Rahman, K. Umpuch, & E. R. V. Rahayu. 2022. Performance and in vivo digestibility of three varieties of napier grass in thin-tailed sheep. Pertanika J. Trop. Agric. Sci. 45:505–517. https://doi.org/10.47836/pjtas.45.2.11
Soundharrajan, I., H. S. Park, S. Rengasamy, R. Sivanesan, & K. C. Choi. 2021. Application and future prospective of lactic acid bacteria as natural additives for silage production—a review. Appl. Sci. 11:8127. https://doi.org/10.3390/app11178127
Sun, X., L. Cheng, A. Jonker, S. Munidasa, & D. Pacheco. 2022. A Review: Plant carbohydrate types—the potential impact on ruminant methane emissions. Front. Vet. Sci. 9:880115. https://doi.org/10.3389/fvets.2022.880115
Sutaryono, Y. A., R. A. Putra, M. Mardiansyah, E. Yuliani, Harjono, Mastur, Sukarne, L. S. Enawati, & Dahlanuddin. 2023. Mixed leucaena and molasses can increase the nutritional quality and rumen degradation of corn stover silage. J. Adv. Vet. Anim. Res. 10:118–125. https://doi.org/10.5455/javar.2023.j660
Tan, H. Y., C. C. Sieo, N. Abdullah, J. B. Liang, X. D. Huang, & Y. W. Ho. 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed. Sci Technol. 169:185–193. https://doi.org/10.1016/j.anifeedsci.2011.07.004
Tefa, Y. A., A. Srihardyastutie, & S. Prasetyawan. 2019. Lactobacillus plantarum fermentation effect on tannin reduction, proximate analysis, and protein profiles of ganyong (Canna edulis Kerr) flour. J. Pure App. Chem. Res. 8:15–22. https://doi.org/10.21776/ub.jpacr.2019.008.01.437
Tilley, J. M. A. & R. A. Terry. 1963. a Two‐stage technique for the in vitro digestion of forage crops. Grass. Forage. Sci. 18:104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
Ungerfeld, E. M. 2020. Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Front. Microbiol. 11:589. https://doi.org/10.3389/fmicb.2020.00589
Wang, N., Y. Xiong, X. Wang, L. Guo, Y. Lin, K. Ni, & F. Yang. 2022. Effects of Lactobacillus plantarum on fermentation quality and anti-nutritional factors of paper mulberry silage. Fermentation 8:144. https://doi.org/10.3390/fermentation8040144
Wang, S., X. Yuan, Z. Dong, J. Li, & T. Shao. 2017. Effect of ensiling corn stover with legume herbages in different proportions on fermentation characteristics, nutritive quality and in vitro digestibility on the Tibetan Plateau. Grassl. Sci. 63:236–244. https://doi.org/10.1111/grs.12173
Weimer, P. J. 2022. Degradation of cellulose and hemicellulose by ruminal microorganisms. Microorganisms 10:2345. https://doi.org/10.3390/microorganisms10122345
Widiyastuti, T., N. Hidayat, & D. Indrasanti. 2014. Nutrient content of napier grass (Pennisetum purpureum) silage made with various additive and modified atmosphere in the silo. Anim. Prod. 16:11–17.
Wiryawan, K. G., E. Wina, & R. Ernawati. 1999. Pemanfaatan tanin kaliandra sebagai agen pelindung beberapa sumber protein bakan (in vitro). Prosiding Seminar Hasil-Hasil Penelitian Bidang llmu Hayati 11:278–289.
Wu, B., Z. Hu, M. Wei, M. Yong, & H. Niu. 2022. Effects of inoculation of Lactiplantibacillus plantarum and Lentilactobacillus buchneri on fermentation quality, aerobic stability, and microbial community dynamics of wilted Leymus chinensis silage. Front. Microbiol. 13:1–14. https://doi.org/10.3389/fmicb.2022.928731
Xue, Z., Y. Wang, H. Yang, S. Li, & Y. Zhang. 2020. Silage fermentation and in vitro degradation characteristics of orchardgrass and alfalfa intercrop mixtures as influenced by forage ratios and nitrogen fertilizing levels. Sustainability 12:871. https://doi.org/10.3390/su12030871
Zhang, G., P. Maillard, Z. Mao, L. Brancheriau, J. Engel, B. Gérard, C. Fortunel, J. L. Maeght, J. Martínez-Vilalta, M. Ramel, S. Nourissier-Mountou, S. Fourtier, & A. Stokes. 2022. Non-structural carbohydrates and morphological traits of leaves, stems and roots from tree species in different climates. BMC Res. Notes 15:251. https://doi.org/10.1186/s13104-022-06136-7
Zhang, Q., M. Zhao, X. Wang, Z. Yu, & R. Na. 2017. Ensiling alfalfa with whole crop corn improves the silage quality and in vitro digestibility of the silage mixtures. Grassl. Sci. 63:211–217. https://doi.org/10.1111/grs.12168
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.