Correlation of Meat pH and Muscle Fiber Characteristics, Cortisol Level, and Tenascin C Gene Expression in Pigs
Abstract
The effects of meat pH on muscle fiber characteristics, cortisol level, and Tenascin C (TNC) gene expression were examined. The muscle samples (n=100) were randomly collected from the Longissimus thoracis et lumborum (LTL) to determine meat pH at 24 hours (meat pH24h) post-mortem. Muscle samples (five samples per group) with divergent meat pH levels (low versus high) were selected to study muscle fiber characteristics and mRNA expression based on quantitative real-time polymerase chain reaction (qRT-PCR). Blood samples (five samples per group) of the two meat pH levels were taken for serum cortisol analysis. The results showed that there was no significant differences between the groups for the muscle fiber characteristics of total number of fibers, muscle fiber diameter, cross-section area, perimysium thickness, and endomysium thickness. Different meat pH24h values did not affect the cortisol level. The mRNA expression of the TNC gene was significantly (p<0.05) downregulated in the low meat pH24h group compared to the high meat pH24h group. In conclusion, meat pH24h was unrelated to the cortisol level and muscle fiber characteristics. However, the TNC gene might play a role in meat pH24h in pigs.
References
Ahmad, K., J.-H. Lim, E.-J. Lee, H.-J. Chun, S. Ali, S.S. Ahmad, S. Shaikh, & I. Choi. 2021. Extracellular matrix and the production of cultured meat. Foods 10:3116. https://doi.org/10.3390/foods10123116
Carrasco-García, A. A., V. T. Pardío-Sedas, G. G. León-Banda, C. Ahuja-Aguirre, P. Paredes-Ramos, B. C. Hernández-Cruz, & V. V. Murillo. 2020. Effect of stress during slaughter on carcass characteristics and meat quality in tropical beef cattle. Asian-Australas. J. Anim. Sci. 33:1656. https://doi.org/10.5713/ajas.19.0804
Casal, N., X. Manteca, R. Peña, A. Bassols, & E. Fàbrega. 2017. Analysis of cortisol in hair samples as an indicator of stress in pigs. J. Vet. Behav. 19:1-6. https://doi.org/10.1016/j.jveb.2017.01.002
Čobanović, N., S. D. Stanković, M. Dimitrijević, B. Suvajdžić, N. Grković, D. Vasilev, & N. Karabasil. 2020. Identifying physiological stress biomarkers for prediction of pork quality variation. Animals 10:614. https://doi.org/10.3390/ani10040614
Creutzinger, K. C., J. M. Stookey, T. W. Marfleet, J. R. Campbell, D. M. Janz, F. J. Marqués, & Y. M. Seddon. 2017. An investigation of hair cortisol as a measure of long-term stress in beef cattle: Results from a castration study. Can. J. Anim. Sci. 97:499-509. https://doi.org/10.1139/CJAS-2016-0206
D’Eath, R. B., S. Turner, E. Kurt, G. Evans, L. Thölking, H. Looft, K. Wimmers, E. Murani, R. Klont, & A. Foury. 2010. Pigs’ aggressive temperament affects pre- slaughter mixing aggression, stress and meat quality. Animal 4:604-616. https://doi.org/10.1017/S1751731109991406
Davoli, R. & S. Braglia. 2007. Molecular approaches in pig breeding to improve meat quality. Brief. Funct. Genomic Proteomic 6:313-321. https://doi.org/10.1093/bfgp/elm036
Dokmanovic, M., M. Z. Baltic, J. Duric, J. Ivanovic, L. Popovic, M. Todorovic, R. Markovic, & S. Pantic. 2015. Correlations among stress parameters, meat and carcass quality parameters in pigs. Asian-Australas. J. Anim. Sci. 28:435. https://doi.org/10.5713/ajas.14.0322
Gao, G., N. Gao, S. Li, W. Kuang, L. Zhu, W. Jiang, W. Yu, J. Guo, Z. Li, & C. Yang. 2021. Genome-wide association study of meat quality traits in a three-way crossbred commercial pig population. Front. Genet. 12:614087. https://doi.org/10.3389/fgene.2021.614087
García-Torres, S., M. Cabeza de Vaca, D. Tejerina, M. P. Romero-Fernández, A. Ortiz, D. Franco, M. A. Sentandreu, & Oliván, M. 2021. Assessment of stressby serum biomarkers in calves and their relationship to ultimate pH as an indicator of meat quality. Animals 11:2291. https://doi.org/10.3390/ani11082291
Ghassemi Nejad, J., M. H. Ghaffari, M. Ataallahi, J.-H. Jo, & H.-G. Lee. 2022. Stress concepts and applications in various matrices with a focus on hair cortisol and analytical methods. Animals 12:3096. https://doi.org/10.3390/ani12223096
Gong, S., Y. L. Miao, G. Z. Jiao, M. J. Sun, H. Li, J. Lin, M. J. Luo, & J. H. Tan. 2015. Dynamics and correlation of serum cortisol and corticosterone under different physiological or stressful conditions in mice. PLoS ONE 10:e0117503. https://doi.org/10.1371/journal.pone.0117503
Gonzalez-Rivas, P. A. S. S. Chauhan, M. Ha, N. Fegan, F. R. Dunshea, & R. D. Warner. 2020. Effect of heat stress on animal physiology metabolism, and meat quality: A review. Meat Sci. 162:108025. https://doi.org/10.1016/j.meatsci.2019.108025
Hamoen, J. R., H. M. Vollebregt, & R. G. M. Van Der Sman. 2013. Prediction of the time evolution of pH in meat. Food Chem. 141:2363-2372. https://doi.org/10.1016/j.foodchem.2013.04.127
Hopkins, D. L., E. N. Ponnampalam, R. J. Van De Ven, & R. D. Warner. 2014. The effect of pH decline rate on the meat and eating quality of beef carcasses. Anim. Prod. Sci. 54:407-413. https://doi.org/10.1071/AN12314
Jankowiak, H., A. Cebulska, & M. Bocian. 2021. The relationship between acidification (pH) and meat quality traits of polish white breed pigs. Eur. Food Res. Technol. 247:2813-2820. https://doi.org/10.1007/s00217-021-03837-4
Jennen, D., A. Brings, G. Liu, H. Jüngst, E. Tholen, E. Jonas, D. Tesfaye, K. Schellander, & C. Phatsara. 2007. Genetic aspects concerning drip loss and water‐holding capacity of porcine meat. J. Anim. Breed. Genet. 124:2-11. https://doi.org/10.1111/j.1439-0388.2007.00681.x
Kayan, A., M. J. Uddin, H. Kocamis, D. Tesfaye, C. Looft, E. Tholen, K. Schellander, & M. U. Cinar. 2013. Association and expression analysis of porcine HNF1A gene related to meat and carcass quality traits. Meat Sci. 94:474-479. https://doi.org/10.1016/j.meatsci.2013.04.015
Kayan, A., M. Cinar, M. Uddin, C. Phatsara, K. Wimmers, S. Ponsuksili, D. Tesfaye, C. Looft, H. Juengst, & E. Tholen. 2011. Polymorphism andexpression of the porcine Tenascin C gene associated with meat and carcass quality. Meat Sci. 89:76-83. https://doi.org/10.1016/j.meatsci.2011.04.001
Khoshoii, A. A., B. Mobini, & E. Rahimi. 2013. Comparison of chicken strains: Muscle fibre diameter and numbers in pectoralis superficialis muscle. Glob. Vet. 11:55-58.
Kim, J. M., K. S. Lim, K. B. Ko, & Y. C. Ryu. 2018. Estimation of pork quality in live pigs using biopsied muscle fibre number composition. Meat Sci. 137:130-133. https://doi.org/10.1016/j.meatsci.2017.11.020
Koomkrong, N., N. Gongruttananun, C. Boonkaewwan, J. Noosud, S. Theerawatanasirikul, & A. Kayan. 2017. Fiber characteristics of pork muscle exhibiting different levels of drip loss. Anim. Sci. J. 88:2044-2049. https://doi.org/10.1111/asj.12859
Koopaei, H. K. & A. E. Koshkoiyeh. 2011. Application of genomic technologies to the improvement of meat quality in farm animals. Biotechnology Molecular Biology Review 6:126-132.
Lawrie, R. A. & D. Ledward. 2014. Lawrie’s Meat Science. Woodhead Publishing Limited, Cambridge, England. p. 1020.
Lee, S.-H., S. Kim, & J.-M. Kim. 2022. Genetic correlation between biopsied and post-mortem muscle fibre characteristics and meat quality traits in swine. Meat Sci. 186: 108735. https://doi.org/10.1016/j.meatsci.2022.108735
Lu, X., Y. Zhang, L. Qin, W. Ma, L. Zhu, & X. Luo. 2018. Association of ultimate pH and stress-related blood variables in cattle. Meat Sci. 139:228-230. https://doi.org/10.1016/j.meatsci.2018.02.004
Meuwissen, T., B. Hayes, & M. Goddard. 2016. Genomic selection: A paradigm shift in animal breeding. Anim. Front. 6:6-14. https://doi.org/10.2527/af.2016-0002
Nishimura, T. 2015. Role of extracellular matrix in development of skeletal muscle and postmortem aging of meat. Meat Sci. 109:48-55. https://doi.org/10.1016/j.meatsci.2015.05.015
Park, B. Y., S. H. Cha, Y. M. Yoo, J. H. Kim, H. S. Chae, I. N. Ahn, Y. K. Kim, J. M. Lee, & S. G. Yun. 2002. Comparison of pork quality by different postmortem pH24 values. J. Anim. Sci. Technol. 44:233-238. https://doi.org/10.5187/JAST.2002.44.2.233
Ryu, Y. & B. Kim. 2005. The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle. Meat Sci. 71:351-357. https://doi.org/10.1016/j.meatsci.2005.04.015
Samorè, A. B. & L. Fontanesi. 2016. Genomic selection in pigs: state of the art and perspectives. Ital. J. Anim. Sci. 15:211-232. https://doi.org/10.1080/1828051X.2016.1172034
Scheffler, T. & D. Gerrard. 2007. Mechanisms controlling pork quality development: The biochemistry controlling postmortem energy metabolism. Meat Sci. 77:7-16. https://doi.org/10.1016/j.meatsci.2007.04.024
Schellander, K. 2009. Identifying genes associated with quantitative traits in pigs: integrating quantitative and molecular approaches for meat quality. Ital. J. Anim. Sci. 8:19-25. https://doi.org/10.4081/ijas.2009.s2.19
Śmiecińska, K., J. Denaburski, & W. Sobotka. 2011. Slaughter value, meat quality, creatine kinase activity and cortisol levels in the blood serum of growingfinishing pigs slaughtered immediately after transport and after a rest period. Pol. J. Vet. Sci. 14:47-54. https://doi.org/10.2478/v10181-011-0007-x
Tippala, T., N. Koomkrong, & A. Kayan. 2021. Influence of freeze-thawed cycles on pork quality. Anim. Biosci. 34:1375. https://doi.org/10.5713/ajas.20.0416
Velleman, S. 2000. The role of the extracellular matrix in skeletal development. Poult. Sci. 79:985-989. https://doi.org/10.1093/ps/79.7.985
Velleman, S. 2012. Meat science and muscle biology symposium: Extracellular matrix regulation of skeletal muscle formation. J. Anim. Sci. 90:936-941. https://doi.org/10.2527/jas.2011-4497
von Lengerken, G., S. Maak, & M. Wicke. 2002. Muscle metabolism and meat quality of pigs and poultry. Veterinarija Zootechnika 20:82-86.
Wang, F., Y. Zhang, J. Li, X. Guo, B. Cui, & Z. Peng. 2016. Contribution of cross- links and proteoglycans in intramuscular connective tissue to shear force in bovine muscle with different marbling levels and maturities. LWT - Food Science Technology 66:413-419. https://doi.org/10.1016/j.lwt.2015.10.059
Yilmaz, A., T. Loustau, N. Salomé, S. Poilil Surendran, C. Li, R. P. Tucker, V. Izzi, R. Lamba, M. Koch, & G. Orend. 2022. Advances on the roles of tenascin-C in cancer. J. Cell Sci. 135:jcs260244. https://doi.org/10.1242/jcs.260244
Zheng, Y. Y., Y. Chen, H. Z. Zhu, C. B. Li, W. J. Song, S. J. Ding, & G. H. Zhou. 2022. Production of cultured meat by culturing porcine smooth muscle cells in vitro with food grade peanut wire-drawing protein scaffold. Food Res. Int. 159:111561. https://doi.org/10.1016/j.foodres.2022.111561
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.