Molecular Identification, Chemical Composition, and In Vitro Anthelmintic Activity of Sargassum duplicatum Against Haemonchus contortus
Abstract
The resistance of the Haemonchus contortus, a parasite causing severe anemia in ruminants, to commercial anthelmintics emphasizes the need for alternative bio-anthelmintics. This study aimed to identify the molecular, chemical composition, and in vitro anthelmintic activity of Sargassum duplicatum against H. contortus. Molecular identification employed the Chelex method, with DNA diversity and phylogeny assessed using maximum likelihood in IQ-tree. The analyzed chemical composition included proximate, total flavonoid, and total phenols. Adult worm motility test (AWMT) and egg hatch inhibiting test (EHIT) were conducted at concentrations of 2, 4, and 6 mg/mL of S. duplicatum ethanolic extract. AWMT followed a completely randomized factorial design (5 replications, each with 5 worms), while EHIT used a completely randomized one-way design (5 replications, each with H. contortus egg batches from 3 adult female worms). The cox1 gene sequence revealed the Sargassum sample as S. duplicatum (KP101270.1) with 99.83% similarity. The results indicated that the identified concentrations of S. duplicatum ethanolic extract, and the observation time significantly influenced motility and egg hatchability (p<0.05). Both factors exhibited a significant interaction (p<0.05). Concentrations of 4-6 mg/mL reduced worm motility by up to 50% (LD50) within 6-8 hours, while concentrations of 2-6 mg/mL inhibited egg hatchability by more than 87% during 24 hours of incubation. In conclusion, S. duplicatum holds significant potential as a bio-anthelmintic agent.
References
Adduci, I., F. Sajovitz, B. Hinney, K. Lichtmannsperger, A. Joachim, T. Wittek, & S. Yan. 2022. Haemonchosis in sheep and goats, control strategies and development of vaccines against Haemonchus contortus. Animals 12:2339. https://doi.org/10.3390/ani12182339
Alara, O. R., N. H. Abdurahman, & C. I. Ukaegbu. 2021. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 4:200-214. https://doi.org/10.1016/j.crfs.2021.03.011
Alborzi, A. R., A. Mehdizadeh, H. Hamidinejat, M. R. Tabandeh, & M. P. Borujeni. 2023. Morphometric and phylogenetic study of Haemonchus isolates in small ruminants from mountainous (Lorestan) and plain (Khuzestan) regions of Iran. Small. Rumin. Res. 219:106913. https://doi.org/10.1016/j.smallrumres.2023.106913
Ali, R., M. Rooman, S. Mussarat, S. Norin, S. Ali, M. Adnan, & S. N. Khan. 2021. A systematic review on comparative analysis, toxicology, and pharmacology of medicinal plants against Haemonchus contortus. Front. Pharmacol. 12:644027. https://doi.org/10.3389/fphar.2021.644027
Anis, M., S. Ahmed, & M. M. Hasan. 2017. Algae as nutrition, medicine and cosmetic: The forgotten history, present status and future trends. World J. Pharm. Pharm. Sci. 6:1934-1959. https://doi.org/10.20959/wjpps20176-9447
AOAC. 2012. Official Methods of Analysis of AOAC International. 18th Ed. Assoc. Off. Anal. Chem. Washington, United State of America.
Arrieche, D., H. Carrasco, A. F. Olea, L. Espinoza, A. San-Martín, & L. Taborga. 2022. Secondary metabolites isolated from Chilean marine algae: A review. Mar. Drugs 20:337. https://doi.org/10.3390/md20050337
Babják, M., A. Königová, M. Komáromyová, T. Kuzmina, P. Nosal, & M. Várady. 2023. Multidrug resistance in Haemonchus contortus in sheep - can it be overcome?. J. Vet. Res. 67:575-581. https://doi.org/10.2478/jvetres-2023-0057
Baek, S. H., C. Lei, S. J. Jeong, H. Kim, T. J. Nam, & S. G. Lee. 2021. The comparison of total phenolics, total antioxidant, and anti-tyrosinase activities of Korean Sargassum species. J. Food Qual. 2021:6640789. https://doi.org/10.1155/2021/6640789
Baihaqi, Z. A., I. Widiyono, A. A. Angeles, B. Suwignyo, & W. Nurcahyo. 2023. Anthelmintic activity of Carica pubescens aqueous seed extract and its effects on rumen fermentation and methane reduction in Indonesian thin-tailed sheep: An in vitro study. Vet. World. 16:1421–1428. https://doi.org/10.14202/vetworld.2023.1421-1428.
Borges, D. G. L. & Borges F. A. 2016. Plants and their medicinal potential for controling gastrointestinal nematodes in ruminants: A Review. Nematoda. 3:e92016. https://doi.org/10.4322/nematoda.00916
Castillo, A., M. Celeiro, M. Lores, K. Grgi, M. Banoži, I. Jerkovi, & S. Joki. 2023. Bioprospecting of targeted phenolic compounds of Dictyota dichotoma, Gongolaria barbata, Ericaria amentacea, Sargassum hornschuchii and Ellisolandia elongata from the adriatic sea extracted by two green methods. Mar. Drugs 21:97. https://doi.org/10.3390/md21020097
Chang, C., M. Yang, H. Wen, & J. Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 3:178-182. https://doi.org/10.38212/2224-6614.2748
Charles, A. L., K. Sridhar, & M. A. Alamsjah. 2020. Effect of drying techniques on color and bioactive potential of two commercial edible Indonesian seaweed cultivars. J. Appl. Phycol. 32:563-572. https://doi.org/10.1007/s10811-019-01916-4
Cikos, A. M., K. Aladic, D. Velic, S. Tomas, P. Loncaric, & I. Jerkovic. 2022. Evaluation of ultrasound‑assisted extraction of fucoxanthin and total pigments from three croatian macroalgal species. Chemical Papers 77:1545-1559. https://doi.org/10.1007/s11696-022-02524-2
Cohort. 2022. CoStat – Free Statistics Software. Version 6.0. Retrieved from http://cohortsoftware.com/costat.html. [July 28, 2023].
Ferdouse, F., S. L. Holdt, R. Smith, P. Murua, & Z. Yang. 2018. The global status of seaweed production, trade and utilization. Food and Agriculture Organization of the United Nations, Rome 124:15-19. Retrieved from https://openknowledge.fao.org/items/a6000671-f73d-4fd0-a681-7a1ef4febb0a [August 1, 2023]
Fraga-Corral, M., P. Otero, L. Cassani, J. Echave, P. Garcia-Oliveira, P. M. Carpena, F. Chamorro, C. Lourenço-Lopes, M. A. Prieto, & J. Simal-Gandara. 2021. Traditional applications of tannin rich extracts supported by scientific data: chemical composition, bioavailability and bioaccessibility. Foods 10:251. https://doi.org/10.3390/foods10020251
Freile-Pelegrín, Y., C. Chávez-Quintal, E. Caamal-Fuentes, E. Vázquez-Delfín, T. Madera-Santana, & D. Robledo. 2020. Valorization of the filamentous seaweed Chaetomorpha gracilis (Cladophoraceae, Chlorophyta) from an IMTA system. J. Appl. Phycol. 32:2295-2306. https://doi.org/10.1007/s10811-020-02066-8
Gazali, M., Nurjanah, & N. P. Zamani. 2018. The exploration of bioactive compound to brown algae Sargassum sp. Agardh as antioxidant from west of Aceh coastal. Indones. J. Aguat. Prod. Technol. 21:167-178. https://doi.org/10.17844/jphpi.v21i1.21543
Ghareeb, R. Y., I. A. Adss, S. R. Bayoumi, & D. E. El-Habashy. 2019. The nematicidal potentiality of some algal extracts and their role in enhancement the tomato defense genes against root knot-nematodes. Egypt. J. Biol. Pest Control 29:53. https://doi.org/10.1186/s41938-019-0153-5
Goering, H. K. & P. J. Van Soest. 1970. Forage Fiber Analysis (Apparatus, Reagents, Procedures, and Some Application). U.S. Agricultural Research Service. The University of Virginia, Virginia, USA.
Haron, F. K., M. D. Shah, Y. S. Yong, J. K. Tan, M. T. M. Lal, & B. A. V. Maran. 2022. Antiparasitic potential of methanol extract of brown alga Sargassum polycystum (Phaeophyceae) and its LC-MS/MS metabolite profiling. Diversity 14:796. https://doi.org/10.3390/d14100796
Hidayah, N., Kustantinah, C. T. Noviandi, A. Astuti, C. Hanim, & B. Suwignyo. 2023. Evaluation of rumen in vitro gas production and fermentation characteristics of four tropical seaweed species. Vet. Integr. Sci. 21:229-238. https://doi.org/10.12982/VIS.2023.018
Hodhodi, A., A. Babakhani, & H. Rostamzad. 2022. Effect of different extraction conditions on phlorotannin content and antioxidant activity of extract from brown algae (Sargassum angustifolium). J. Food Process Preserv. 46:e16307. https://doi.org/10.1111/jfpp.16307
Jabbar, A., M. Z. Iqbal, M. Ashraf, A. Z. Durrani, H. Sajjad, M. N. Wana, A. Ullah, M. Imran, M. S. Z. Ghauri, & H. I. Ahmad. 2022. Effects of Ferula asafetida, closantel, albendazole, oxfendazole, and ivermectin against Haemonchus contortus in goats and sheep. Trop. Anim. Health Prod. 54:107. https://doi.org/10.1007/s11250-022-03111-z
Johnson, M., S. A. Kanimozhi, T. R. J. J. Malar, T. Shibila, P. R. Freitas, S. R. Tintino, I. R. A. Menezes, J. G. M. da Costa, & H. D. M. Coutinho. 2019. The antioxidative effects of bioactive products from Sargassum polycystum C. Agardh and Sargassum duplicatum J. Agardh against inflammation and other pathological issues. Complement. Ther. Med. 46:19-23. https://doi.org/10.1016/j.ctim.2019.06.014
Khan, S. A., M. Abid, & F. Hussain. 2015. Nematicidal activity of seaweeds against Meloidogyne javanica. Pak. J. Nematol. 33:195-203.
Lane, C. E., S. C. Lindstrom, & G. W. Saunders. 2007. A molecular assessment of northeast Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding. Mol. Phylogenet. Evol. 44:634–648. https://doi.org/10.1016/j.ympev.2007.03.016
Lee-Rangel, H. A., J. A. Roque-Jiménez, R. O. Cifuentes-López, G. Álvarez-Fuentes, A. D. l. Cruz-Gómez, J. A. Martínez-García, J. I. Arévalo-Villalobos, & A. J. Chay-Canul. 2022. Evaluation of three marine algae on degradability, in vitro gas production, and CH4 and CO2 emissions by ruminants. Fermentation 8:511. https://doi.org/10.3390/fermentation8100511
Lima, C. S., M. H. Pereira, Y. A. Gainza, H. Hoste, L. O. Regasini, & A. C. S. Chagas. 2021. Anthelmintic effect of Pterogyne nitens (Fabaceae) on eggs and larvae of Haemonchus contortus: Analyses of structure-activity relationships based on phenolic compounds. Ind. Crops. Prod. 164:113348. https://doi.org/10.1016/j.indcrop.2021.113348
Ljungström, S., L. Melville, P. J. Skuce, & J. Höglund. 2018. Comparison of four diagnostic methods for detection and relative quantification of Haemonchus contortus eggs in feces samples. Front. Vet. Sci. 4:239. https://doi.org/10.3389/fvets.2017.00239
Maestrini, M., M. B. Molento, S. Mancini, F. S. R. Cuna, G. Furnani, D. Serio, L. Cornara, & S. Perrucci. 2021. Evaluation of the anthelmintic properties of a traditional remedy based on a mixture of red algae using an in vitro assay on gastrointestinal nematodes of donkeys. Open J. Chem. 4:1-7. https://doi.org/10.30538/psrp-ojc2021.0018
Mattio, L. & C. E. Payri. 2009. Taxonomic revision of Sargassum species (Fucales, Phaeophyceae) from New Caledonia based on morphological and molecular analyses. J. Phycol. 45:1374-1388. https://doi.org/10.1111/j.1529-8817.2009.00760.x
Miclon, M., É. Courtot, F. Guégnard, O. Lenhof, L. Boudesocque-Delaye, M. Matard-Mann, P. N. Collén, P. Castagnone-Sereno, & C. Neveu. 2023. The brown alga Bifurcaria bifurcata presents an anthelmintic activity on all developmental stages of the parasitic nematode Heligmosomoides polygyrus bakeri. Pathogens 12:540. https://doi.org/10.3390/pathogens12040540
Nazarudin, M. F., N. H. Alias, A. Balakrishnan, W. N. I. W. Hasnan, N. A. I. N. Mazli, M. I. Ahmad, I. M. Yasin, A. Isha, & M. Aliyu-Paiko. 2021. Chemical, nutrient and physicochemical properties of brown seaweed, Sargassum polycystum C. Agardh (Phaeophyceae) collected from Port Dickson, Peninsular Malaysia. Molecules 26:5216. https://doi.org/10.3390/molecules26175216
Olmedo-Juáre, A., A. L. Jimenez-Chino, A. Bugarin, A. Zamilpa, P. Mendoza-de Gives, A. Villa-Mancera, M. E. López-Arellano, J. Olivares-Pérez, E. J. Delgado-Núñez, & M. González-Cortazar. 2022. Phenolic acids and flavonoids from Pithecellobium dulce (Robx.) Benth leaves exhibit ovicidal activity against Haemonchus contortus. Plants 11:2555. https://doi.org/10.3390/plants11192555
Park, K. Y., Y. H. Jo, J. G. Nejad, J. C. Lee, & H. G. Lee. 2022. Evaluation of nutritional value of Ulva sp. and Sargassum horneri as potential eco-friendly ruminants feed. Algal Res. 65:102706. https://doi.org/10.1016/j.algal.2022.102706
Phetcharat, S., K. Pattarach, P. Chen, W. Wang, S. Liu, & J. Mayakun. 2023. Species diversity and distribution of the calcareous green macroalgae Halimeda in Taiwan, Spratly Island, and Dongsha Atoll, with the proposal of Halimeda taiwanensis sp. nov. Phychol. Res. 71:116-130. https://doi.org/10.1111/pre.12516
Pramesti, R., W. A. Setyati, D. Pringgenies, & M. Zainuddin. 2019. Phenol content and antioxidative activity in the extract of multiple Sargassum species. Ann. Biolog. Sci. 7:7-15. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1529-8817.2009.00760.x.
Prasedya, E. S., A. Frediansyah, N. W. R. Martyasari, B. K. Ilhami, A. S. Abidin, H. Padmi, Fahrurrozi, A. B. Juanssilfero, S. Widyastuti, & A. L. Sunarwidhi. 2021. Effect of particle size on phytochemical composition and antioxidant properties of Sargassum cristaefolium ethanol extract. Sci. Rep. 11:17876. https://doi.org/10.1038/s41598-021-95769-y
Rehman, T., A. A. El-Mansi, S. K. Alhag, L. A. Al-Shuraym, Z. Saeed, M. Arif, M. Rashid, Z. A. Bhutta, & M. A. Zaman. 2023. Antiparasitic activity of methanolic and ethyl acetate extracts of Azadirachta indica against Haemonchus contortus. Pak. Vet. J. 43:199-203. http://pvj.com.pk/pdf-files/23-001.pdf
Sakti, A. A., B. Suwignyo, A. Sofyan, C. Hanim, H. Herdian, J. Jasmadi, T. Pasaribu, H. Julendra, G. Gunawan, P. Ratnawati, L. Hartati, S. A. E. Tarigan, & K. Adiwimarta. 2024. In vitro anthelmintic activity of Chaetomorpha vieillardii ethanolic extract against adult worm motility and egg-hatching of Haemonchus contortus from sheep. Vet. Integr. Sci. 22:445-462. https://doi.org/10.12982/VIS.2024.031
Sakti, A. A., Kustantinah, & R. W. Nurcahyo. 2018. In vitro and in vivo anthelmintic activities of aqueous leaf infusion of Azadirachta indica against Haemonchus contortus. Trop. Anim. Sci. J. 41:185-190. https://doi.org/10.5398/tasj.2018.41.3.185
Sofyan, A., A. Irawan, H. Herdian, Jasmadi, M. A. Harahap, A. A. Sakti, A. E. Suryani, H. Novianty, T. Kurniawan, I. N. G. Darma, A. Windarsih, & A. Jayanegara. 2022. Effects of various macroalgae species on methane production, rumen fermentation, and ruminant production: A meta-analysis from in vitro and in vivo experiments. Anim. Feed Sci. Technol. 294:115503. https://doi.org/10.1016/j.anifeedsci.2022.115503
Taki, A. C., R. Brkljaca, T. Wang, A. V. Koehler, G. Ma, J. Danne, S. Ellis, A. Hofmann, B. C. H. Chang, A. Jabbar, S. Urban, & R. B. Gasser. 2020. Natural compounds from the marine brown alga Caulocystis cephalornithos with potent in vitro-activity against the parasitic nematode Haemonchus contortus. Pathogens 9:1-15. https://doi.org/10.3390/pathogens9070550
Trifinopoulos, J., L. T. Nguyen, A. von Haeseler, & B. Q. Minh. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44:W232–W235. https://doi.org/10.1093/nar/gkw256
Urrea-Victoria, V., C. M. Furlan, D. Y. A. C. dos Santos, & F. Chow. 2022. Antioxidant potential of two Brazilian seaweeds in response to temperature: Pyropia spiralis (red alga) and Sargassum stenophyllum (brown alga). J. Exp. Mar. Biol. Ecol. 549:151706. https://doi.org/10.1016/j.jembe.2022.151706
Velázquez-Antunez, J., J. Olivares-Perez, A. Olmedo-Juárez, S. Rojas-Hernandez, A. Villa-Mancera, T. Romero-Rosales, A. Zamilpa, & M. Gonzalez-Cortazar. 2023. Biological activity of the secondary compounds of Guazuma ulmifolia leaves to inhibit the hatching of eggs of Haemonchus contortus. Pak. Vet. J. 43:55-60. https://doi.org/10.29261/pakvetj/2022.075
Winarni, D., F. N. Husna, M. F. Syadzha, R. J. K. Susilo, S. Hayaza, A. N. M. Ansori, M. A. Alamsjah, M. N. G. Amin, P. A. C. Wulandari, P. Pudjiastuti, & K. Awang. 2022. Topical administration effect of Sargassum duplicatum and Garcinia mangostana extracts combination on open wound healing process in diabetic mice. Scientifica 2022:9700794. https://doi.org/10.1155/2022/9700794
Wouthuyzen, S., S. M. C. Herandarudewi, & T. Komatsu. 2016. Stock assessment of brown seaweeds (Phaeophyceae) along the Bitung-Bentena coast, North Sulawesi Province, Indonesia for alginate product using satellite remote sensing. Procedia Environ. Sci. 33:553-561. https://doi.org/10.1016/j.proenv.2016.03.107
Zuccarello, G. C. & G. M. Lokhorst. 2005. Molecular phylogeny of the genus Tribonema (Xanthophyceae) using rbcL gene sequence data: monophyly of morphologically simple algal species. Phycologia 44:384-392. https://doi.org/10.2216/0031-8884(2005)44[384:MPOTGT]2.0.CO;2
Zuccarello, G. C. & N. A. Paul. 2019. A beginner’s guide to molecular identification of seaweed. Squalen 14:43–53. https://doi.org/10.15578/squalen.v14i1.384
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.