Genetic Diversity and Population Structure of Taurine Cattle Using STR Markers in Burkina Faso, West Africa

A. S. R. Tapsoba, S. E. Sawadogo, B. Yougbaré, F. G. Traoré, F. Béré, M. Sanou, H. H. Tamboura, B. Bayala, R. Pichler, A. Traoré, K. Periasamy

Abstract

Burkina Faso relies on its substantial bovine population for meat and milk production, ensuring food security. The country hosts three primary taurine cattle populations: Lobi, Gourounsi Nahouri, and Gourounsi Ténado. These cattle are adapted to local conditions and exhibit valuable trypan tolerant traits, playing a crucial role in sustaining local communities and holding cultural and socio-economic significance. This study aimed to assess the genetic diversity and structure of Burkina’s primary taurine cattle populations using 27 microsatellite markers. Blood samples from 143 cattle representing these populations were genotyped. The analysis included assessing genetic diversity, deviations from Hardy-Weinberg equilibrium, calculating genetic distances, and population structure. The results revealed that all loci were polymorphic, indicating high allelic diversity. The overall mean FIS was moderate (0.028), ranging from -0.36 (CSRM60) to 0.73 (INRA035). Genetic differentiation between populations was moderate, accounting for 4% of the total differences. The highest pairwise FST was observed between Lobi and Gourounsi Ténado. The neighbor-joining tree displayed high admixture levels between Gourounsi populations, while Lobi cattle clustered as a distinct population. The population structure analysis indicated significant zebu gene introgression in Burkina taurine populations with relatively higher levels of admixtures in Gourounsi cattle compared to Lobi. The study provided a thorough genetic analysis of Burkina Faso's taurine cattle populations, uncovering the diversity and population structure. The study also revealed the differences in the prevalence of tsetse flies and associated trypanosomosis across the native tracts of Burkinabe taurine cattle populations had shaped the level of zebu introgression in them.

References

Blagna, S., M. Tellah, F. M. Mbaindingatoloum, Y. M. Logtene Mopate, & H. Boly. 2017. Insémination artificielle bovine par synchronisation des chaleurs au crestarnd en milieu éleveur dans les Cascades au Burkina Faso. J. Appl. Biosci. 110:10819-10830. https://doi.org/10.4314/jab.v110i1.12

Baudouin, L. & P. Lebrun. 2021. An operational Bayesian approach for the identification of sexually reproduced cross-fertilized populations using molecular markers. Acta Hortic. 546:81–93. https://doi.org/10.17660/ActaHortic.2001.546.5

Bora, S. K., T. S. Tessema, & G. Girmay. 2023. Genetic diversity and population structure of selected Ethiopian indigenous cattle breeds using microsatellite markers. Genet. Res. 2023:ID1106755. https://doi.org/10.1155/2023/1106755

Chang, Y. Y., H. C. Liu, & C. F. Chen. 2023. Monitoring changes in the genetic structure of Brown Tsaiya duck selected for feeding efficiency by microsatellite markers. Anim. Biosci. 36:417-428. https://doi.org/10.5713/ab.22.0213

Dieringer, D. & C. Schlötterer. 2003. MICROSATELLITE ANALYZER (MSA): A platform independent analysis tool for large microsatellite data sets. Mol. Ecol. 3:167-169. https://doi.org/10.1046/j.1471-8286.2003.00351.x

Ema, P. J. N., Y. Manjeli, F. Meutchieyié, C. Keambou, B. Wanjala, A. F. Desta, S. Ommeh, R. Skilton, & A. Djikeng. 2014. Genetic diversity of four Cameroonian indigenous cattle using microsatellite markers. J. Livest. Sci. 5:9-17.

Evanno, G., S. Regnaut, & J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14:2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

FAO. 2011. Molecular Genetic Characterization of Animal Genetic Resources. FAO Animal Production and Health Guidelines. No. 9. Rome. https://openknowledge.fao.org/handle/20.500.14283/i2413e [December 26, 2023].

Felsenstein, J. 1993. PHYLIP: Phylogeny Inference Package, Version 3.5. Department of Genetics, Washington University, Seattle, Washington.

Flori, L., S. Thevenon, G. K. Dayo, M. Senou, S. Sylla, D. Berthier, K. Moazami-Goudarzi, & M. Gautier. 2014. Adaptive admixture in the West African bovine hybrid zone: insight from the Borgou population. Mol. Ecol. 23:3241-3257. https://doi.org/10.1111/mec.12816

Gargani, M., L. Pariset, J. A. Lenstra, E. De Minicis, European Cattle Genetic Diversity Consortium, & A. Valentini. 2015. Microsatellite genotyping of medieval cattle from central Italy suggests an old origin of Chianina and Romagnola cattle. Front. Genet. 6:1-6. https://doi.org/10.3389/fgene.2015.00068

Grema, M., A. Traoré, M. Issa, M. Hamani, M. Abdou, A. Soudré, M. Sanou, R. Pichler, H. H. Tamboura, Y. Alhassane, & K. Periasamy. 2017. Short tandem repeat (STR) based genetic diversity and relationship of indigenous Niger cattle. Arch. Anim. Breed. 60:399-408. https://doi.org/10.5194/aab-60-399-2017

Hussein, I. H., S. S. Alam, A. A. A. Makkawi, S. E. A. Sid-Ahmed, A. S. Abdoon, & M. S. Hassanane. 2015. Genetic diversity between and within sudanese zebu cattle breeds using microsatellite markers. Research Genetics 2015:135483.

Kalinowski, S. T., M. L. Taper, & T. C. Marshall. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16:1099-1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x

Kumar, S., G. Stecher, M. Li, C. Knyaz, & K. Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35:547-1549. https://doi.org/10.1093/molbev/msy096

Leroy, G., R. Baumung, P. Boettcher, B. Scherf, & I. Hoffmann. 2015. Review: Sustainability of crossbreeding in developing countries; definitely not like crossing a meadow. Animal 10:262-273. https://doi.org/10.1017/S175173111500213X

Lokugalappatti, L. G. S., P. A. B. D. A. Wickramasinghe, K. Abbas, T. Hussain, S. Ramasamy, V. Manomohan, A. S. R. Tapsoba, R. Pichler, M. E. Babar, & K. Periasamy. 2023. Indigenous cattle of Sri Lanka: Genetic and phylogeographic relationship with Zebu of Indus Valley and South Indian origin. PLoS ONE 18:e0282761. https://doi.org/10.1371/journal.pone.0282761

Moussa, M. M. A., M. Gréma, A. R. S Tapsoba, M. Issa, A. Traoré, M. Hamani, R. Pichler, A. Soudré, M. Sanou, H. H.Tamboura, A. Yenikoye, Y. Alhassane, & K. Periasamy. 2019. Analyse de la diversité génétique de la race bovine Bororo (Wodaabé) du Niger à l’aide de marqueurs microsatellites. Int. J. Biol. Chem. 13:1109-1126. https://doi.org/10.4314/ijbcs.v13i2.42

MRAH. 2019. Annuaire des Statistiques de L’élevage. DGESS, Ministère des Ressources Animales et Halieutiques, Burkina Faso. p.140.

Ndiaye, N. P., A. Sow, G. K. Dayo, S. Ndiaye, G. J. Sawadogo, & M. Sembène. 2015. Genetic diversity and phylogenetic relationships in local cattle breeds of Senegal based on autosomal microsatellite markers. Vet. World 8:994-1005. https://doi.org/10.14202/vetworld.2015.994-1005

Ouédraogo, D., A. Soudré, S. Ouédraogo-Koné, B. L. Zoma, B. Yougbaré, N. Khayatzadeh, P. A. Burger, G. Mészáros, A. Traoré, A. O. Mwai, M. Wurzinger, & J. Sölkner. 2020. Breeding objectives and practices in three local cattle breed production systems in Burkina Faso with implications for the design of breeding programs. Livest. Sci. 232:103910. https://doi.org/10.1016/j.livsci.2019.103910

Paetkau, D., W. Calvert, I. Sterling, & C. Strobeck. 1995. Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology 4:347-354. https://doi.org/10.1111/j.1365-294X.1995.tb00227.x

Piry, S., A. Alapetite, J. M. Cornuet, D. Paetkau, L. Baudouin, & A. Estoup. 2004. GeneClass2: A software for genetic assignment and first-generation migrant detection. J. Hered. 95:536-539. https://doi.org/10.1093/jhered/esh074

Piry, S., G. Luikart, & J. M. Cornuet. 1999. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90:502-503. https://doi.org/10.1093/jhered/90.4.502

Pitt, D., N. Sevane, Z. L. Nicolazzi, D. E. MacHugh, S. D. E. Park, L. Colli, R. Martinez, & M. W. Bruford. 2019. Domestication of cattle: Two or three events? Evol. Appl. 12:123-136. https://doi.org/10.1111/eva.12674

Planchenault, D. 1987. L’élevage In: Elevage et Potentialités Pastorales Sahéliennes. Synthèses Cartographiques. Burkina Faso = Animal Husbandry and Sahelian Pastoral Potentialities. Cartographic Synthesis. Burkina Faso. Pp. 18-22.

Pritchard, J. K., M. Stephens, & P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945–959. https://doi.org/10.1093/genetics/155.2.945

Rannala, B. & J. L. Mountain. 1997. Detecting immigration by using multilocus genotypes. Genetics 94:9197-9201. https://doi.org/10.1073/pnas.94.17.9197

Raymond, M. & F. Rousset. 1995. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86:248-249. https://doi.org/10.1093/oxfordjournals.jhered.a111573

Rouamba, J. P. 2016. Revue Des Filières Bétail/Viande Et Lait Et Des Politiques Qui Les Influencent Au Burkina Faso. FAO-CEDEAO. p. 57. https://www.fao.org/3/i5261f/i5261f.pdf [December 26, 2023].

Solodneva, E., G. Svishcheva, R. Smolnikov, S. Bazhenov, E. Konorov, V. Mukhina, & Y. Stolpovsky. 2023. Genetic structure analysis of 155 transboundary and local populations of cattle (Bos taurus, Bos indicus and Bos grunniens) based on STR markers. Int. J. Mol. Sci. 24:5061. https://doi.org/10.3390/ijms24055061

Traoré, A., D. O. Koudandé, I. Fernandez, A. Soudré, V. Granda, I. Alvarez, S. Diarra, F. Diarra, A. Kaboré, M. Sanou, H. H. Tamboura, & F. Goyache. 2015. Geographical assessment of body measurements and qualitative traits in West African cattle. Trop. Anim. Health Prod. 47:1505-1513. https://doi.org/10.1007/s11250-015-0891-7

Waples, R. S. 2015. Testing for Hardy-Weinberg proportions: have we lost the plot? J. Hered. 106:1-19. https://doi.org/10.1093/jhered/esu062

Yougbaré, B., D. Ouédraogo, A. S. R. Tapsoba, A. Soudré, B. L. Zoma, P. Orozco-terWenge, M. Sanou, S. Ouédraogo-Koné, M. Wurzinger, H. H. Tamboura, A. Traoré, O. A. Mwai, J. Sölkner, N. Khayatzadeh, G. Mészáros1, & P. A. Burger. 2021. Local ancestry to identify selection in response to trypanosome infection in baoulé x zebu crossbred cattle in Burkina Faso. Front. Genet. 12:1-14. https://doi.org/10.3389/fgene.2021.670390

Zoma-Traoré, B., A. Soudré, S. Ouédraogo-Koné, N. Khayatzadeh, L. Probst, J. Sölkner, G. Mészáros, P. A. Burger, A. Traoré, M. Sanou, G. M. S. Ouédraogo, L. Traoré, D. Ouédraogo, B. Yougbaré, & M. Wurzinger. 2020. From farmers to livestock keepers: a typology of cattle production systems in south-western Burkina Faso. Trop. Anim. Health Prod. 52:2179-2189. https://doi.org/10.1007/s11250-020-02241-6

Authors

A. S. R. Tapsoba
stephanetapsoba@yahoo.fr (Primary Contact)
S. E. Sawadogo
B. Yougbaré
F. G. Traoré
F. Béré
M. Sanou
H. H. Tamboura
B. Bayala
R. Pichler
A. Traoré
K. Periasamy
TapsobaA. S. R., SawadogoS. E., YougbaréB., TraoréF. G., BéréF., SanouM., TambouraH. H., BayalaB., PichlerR., TraoréA., & PeriasamyK. (2024). Genetic Diversity and Population Structure of Taurine Cattle Using STR Markers in Burkina Faso, West Africa. Tropical Animal Science Journal, 47(2), 131-140. https://doi.org/10.5398/tasj.2024.47.2.131

Article Details