Comparison of Growth Traits of Male Bali Cattle (Bos javanicus) with Different Adult Coat Colors
Abstract
Bali cattle have a distinct coloration that indicates the sexual dimorphism of adult cattle. However, coat color deviations are found in bulls due to either genetic impurity or inbreeding. Furthermore, information is needed to determine whether there is a relationship between coat color and cattle performance. This study aimed to evaluate the potential association between coat color deviation and the growth traits of male Bali cattle. A total of 99 adult male Bali cattle from Livestock Breeding and Forage Centre (BPTU) Denpasar, Bali, were used in this study to assess the possible association between coat color and growth capacity. Animals were grouped according to color patterns into full black (FBL), faded black (FDB), black sorel (BSR), and sorel (SRL). Periodically, growth traits of body weight (BW), wither height (WH), body length (BL), and chest circumference (CC) were measured at birth, weaning, and 365 and 730 days of age. The repeated measurement Anova analysis was used to evaluate the relation between coat color and growth traits over time. This study showed no correlation for both traits in calves due to the absence of color deviation in age. However, it turned out to be a significantly positive correlation (p<0.05) when Bali cattle reached puberty at 365 and 730 days. The black adult bulls (FBL & FDB) were significantly larger in growth traits (p<0.05) than their brown (BSR and SRL) counterparts. The coat color of male adult Bali cattle was associated with their growth traits.
References
Agung, P. P., W. P. B. Putra, S. Anwar, & A. S. Wulandari. 2018. Body weight estimation of Bali cattle in Banyumulek techno park, West Nusa Tenggara using several morphometric parameters. Buletin Peternakan 42:20–25. https://doi.org/10.21059/buletinpeternak.v42i1.29840
Anzures-Olvera, F., F. G. Véliz, A. De Santiago, J. E. García, J. Mellado, U. Macías-Cruz, L. Avendaño-Reyes, & M. Mellado. 2019. The Impact of hair coat color on physiological variables, reproductive performance and milk yield of Holstein cows in a hot environment. J. Therm. Biol. 81:82–88. https://doi.org/10.1016/j.jtherbio.2019.02.020
Arenas-Báez, P., T. H. Glafiro, C. H. Gabriela, H. R. Martha, A. S. Ricardo, V. L. Samuel, G. M. Juan, A. D. M. Pablo, D. G. Lorenzo, & A. M. Jorge. 2023. Coat Color in local goats: Influence on environmental adaptation and productivity and use as a selection criterion. Biology 12:929. https://doi.org/10.3390/biology12070929
Arisasmita, S. M. A. 2018. Pertumbuhan Sapi Bali Pada Pemeliharaan Intensif dan Ekstensif di BPTU-HPT Denpasar [Growth traits of Bali Cattle in Intensive and Extensive Maintenance at BPTU-HPT Denpasar]. [Thesis].IPB University, Bogor.
Bonaventure, J., J. D. Melanie, & L. Lionel. 2013. Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells. Pigment Cell Melanoma Res. 26:316–25. https://doi.org/10.1111/pcmr.12080
Bradshaw, C. J. A., Y. Isagi, S. Kaneko, D. M. J. S. Bowman, & B. W. Brook. 2006. Conservation value of non-native Banteng in Northern Australia. Conserv. Biol. 20:1306–1311. https://doi.org/10.1111/j.1523-1739.2006.00428.x
Brenig, B., J. Beck, C. Floren, K. Bornemann-Kolatzki, I. Wiedemann, S. Hennecke, H. Swalve, & E. Schütz. 2013. Molecular genetics of coat colour variations in white galloway and white park cattle. Anim. Genet. 44:450–453. https://doi.org/10.1111/age.12029
Brito, L. F. C. 2021. Sexual Development and Puberty in Bulls. In R.M. Hopper (Ed.). Bovine Reproduction. 2nd ed. John Wiley & Sons, Ltd. pp. 58–78. https://doi.org/10.1002/9781119602484.ch6
Chacur, M., A. Alex, O. Eunice, S. Camila, & R. G. F. Luis. 2018. Influence of testosterone on body and testicular development in Zebu cattle in the tropical climate. In Advances in Testosterone Action, pp. 91–108. IntechOpen. https://doi.org/10.5772/intechopen.76706
Decampos, J. S., C. O. N. Ikeobi, O. Olajide, O. S. Smith, M. A. Adeleke, M. Wheto, D. O. Ogunlakin, A. A. Mohammed, T. M. Sanni, B. A. Ogunfuye, R. A. Lawal, A. S. Adenaike, & S. A. Amusan. 2013. Effects of coat colour genes on body measurements, heat tolerance traits and haematological parameters in West African Dwarf sheep. Open J. Genet. 3:280–284. https://doi.org/10.4236/ojgen.2013.34031
Dreger, D. L., B. N. Hooser, A. M. Hughes, B. Ganesan, J. Donner, H. Anderson, L. Holtvoigt, & K. J. Ekenstedt. 2019. True colors: Commercially-acquired morphological genotypes reveal hidden allele variation among dog breeds, informing both trait ancestry and breed potential. PLoS One 14:e0223995. https://doi.org/10.1371/journal.pone.0223995
Durosaro, S. O., A. Ojo, A. O. Fadare, O. Olowofeso, B. M. Ilori, S. O. Osho, I. M. Ogunade, & M. O. Ozoje. 2014. Effect of coat colour on water intake and feed utilization of intensively reared West African dwarf sheep in the humid tropics. International Journal African Asian Studies 4:43.
Eckert, E., H. E. Brown, K. E. Leslie, T. J. DeVries, & M. A. Steele. 2015. Weaning age affects growth, feed intake, gastrointestinal development, and behavior in Holstein calves fed an elevated plane of nutrition during the preweaning stage. J. Dairy Sci. 98:6315–6326. https://doi.org/10.3168/jds.2014-9062
Finch, V. A., I. L. Bennett, & C. R. Holmes. 1984. Coat colour in cattle: Effect on thermal balance, behaviour and growth, and relationship with coat type. J. Agric. Sci. 102:141–147. https://doi.org/10.1017/S0021859600041575
Getachew, T., A. Abebe, S. Gizaw, B. Rischkowsky, A. Bisrat, & A. Haile. 2020. Coat color alterations over the years and their association with growth performances in the Menz sheep central nucleus and community-based breeding programs. Trop. Anim. Health Prod. 52:2977–2985. https://doi.org/10.1007/s11250-020-02315-5
Goud, T. S., R. C. Upadhyay, V. B. R. Pichili, S. K. Onteru, & K. Chadipiralla. 2021. Molecular characterization of coat color gene in Sahiwal versus Karan Fries bovine. J. Genet. Eng. Biotechnol. 19:22. https://doi.org/10.1186/s43141-021-00117-2
Greenwood, P. L. & L. M. Café. 2007. Prenatal and pre-weaning growth and nutrition of cattle: Long-term consequences for beef production. Animal 1:1283–1296. https://doi.org/10.1017/S175173110700050X
Gouveia, J. J. D. S., M. V. G. B. da Silva, S. R. P. Paiva, & S. M. P. de Oliveira. 2014. Identification of selection signatures in livestock species. Genet. Mol. Biol. 37:330–342. https://doi.org/10.1590/S1415-47572014000300004
Gupta, S. K., P. Singh, K. P. Shinde, S. A. Lone, N. Kumar, & A. Kumar. 2016. Strategies for attaining early puberty in cattle and buffalo: A review. Agricultural Reviews 32:160-167. https://doi.org/10.18805/ar.v37i2.10741
Hayanti, S. Y., E. Handiwirawan, B. Zubir, & E. Susilawati. 2021. Diversity of qualitative characteristics and their use to distinguish the origin of the Bali cattle population. Indian J. Anim. Res. 56:1041–1046. https://doi.org/10.18805/IJAR.BF-1417
Hur, S. J., T. C. Jeong, G. D. Kim, J. Y. Jeong, I. C. Cho, H. T. Lim, B. W. Kim, & S. T. Joo. 2013. Comparison of live performance and meat quality parameter of cross bred (Korean native black pig and landrace) pigs with different coat colors. Asian-Australas. J. Animal Sci. 26:1047–1053. https://doi.org/10.5713/ajas.2013.13005
Jakaria, J., K. Kholijah, S. Darwati, Q. Rahman, W. L. Daulay, I. Suhendro, I. M. Londra, M. F. Ulum, & R. R. Noor. 2023. Lack of association between coat color abnormalities in Bali cattle (Bos Javanicus) and the coding regions of the MC1R and KIT genes. Vet. World 1312–1318. https://doi.org/10.14202/vetworld.2023.1312-1318
Jakaria, J., K. Khasanah, R. Priyanto, M. Baihaqi, & M. F. Ulum. 2017. Prediction of meat quality in Bali cattle using ultrasound imaging. J. Indones. Trop. Anim. Agric. 42:59–65. https://doi.org/10.14710/jitaa.42.2.59-65
Kasa, I. W., A. A. S. Sukmaningsih, & I. B. Darmayasa. 2015. Efforts in conserving purebred Bali cattle as draught and beef type in Bali Island, Indonesia. Buletin Veteriner Udayana 7:95-100.
Keselman, H. J., J. Algina, & R. K. Kowalchuk. 2001. The analysis of repeated measures designs: A review. Br. J. Math. Stat. Psychol. 54:1–20. https://doi.org/10.1348/000711001159357
Kholghi, M., J. Rostamzadeh, M. Razmkabir, & F. Heidari. 2020. Blood testosterone level affects sex ratio of bull semen. Concepts Dairy Veterinary Sciences 4:363–369. https://lupinepublishers.com/dairy-veterinary-science-journal/fulltext/blood-testosterone-level-affects-sex-ratio-of-bull-semen.ID.000177.php
Kunene, L. M., F. C. Muchadeyi, K. Hadebe, G. Mészáros, J. Sölkner, T. Dugmore, & E. F. Dzomba. 2022. Genetics of base coat colour variations and coat colour-patterns of the South African Nguni cattle investigated using high-density SNP genotypes. Front. Genet. 13: 832702. https://doi.org/10.3389/fgene.2022.832702
Lee, C. N., K. S. Baek, & A. Parkhurst. 2016. The impact of hair coat color on longevity of Holstein cows in the tropics. J. Anim. Sci. Technol. 58:41. https://doi.org/10.1186/s40781-016-0123-3
Lee, H. L., J. H. Park, Y. S. Kim, & J. G. Kim. 2015. Analysis of coat color changes and hormone levels in Korean brindle cattle. J. Anim. Reprod. Biotechnol. 30:65–71. https://doi.org/10.12750/JET.2015.30.1.65
Lemaître, J. F., L. Cheynel, F. Douhard, G. Bourgoin, F. Débias, H. Ferté, E. Gilot-Fromont, S. Pardonnet, M. Pellerin, B. Rey, C. Vanpé, A. J. Mark Hewison, & J.-M. Gaillard. 2018. The influence of early-life allocation to antlers on male performance during adulthood: Evidence from contrasted populations of a large herbivore. J. Anim. Ecol. 87:921–932. https://doi.org/10.1111/1365-2656.12833
Lindell, I. C. 2013. Phenotyping of Bali Cattle and Interviewing Farmers in Indonesia - a Minor Field Study. [Thesis]. Swedish University of Agricultural Sciences.
Maia, A. S. C., G. R. Da Siva, E. C. A. Bertipaglia, & C. D. Muñoz. 2005. Genetic variation of the hair coat properties and the milk yield of Holstein cows managed under shade in a tropical environment. Braz. J. Vet. Res. Anim. Sci. 43:180–187.
Maloney, S. K., A. Fuller, & D. Mitchell. 2009. Climate change: Is the dark soay sheep endangered? Biol. Lett. 5:826–829. https://doi.org/10.1098/rsbl.2009.0424
Martínez-Velázquez, G., K. E. Gregory, G. L. Bennett, & L. D. Van Vleck. 2003. Genetic relationships between scrotal circumference and female reproductive traits. J. Anim. Sci. 81:395–401. https://doi.org/10.2527/2003.812395x
Mc Dowell, R. E., B.F. Hollon, J. K. Camoens, & L. D. Van Vleck. 1976. Reproductive efficiency of jerseys, red sindhi and crossbreds. J. Dairy Sci. 59:127-136. https://doi.org/10.3168/jds.S0022-0302(76)84167-7
Mishra, P., U. Singh, C. M. Pandey, P. Mishra, & G. Pandey. 2019. Application of student’s t-test, analysis of variance, and covariance. Ann. Card. Anaesth. 22:407–411. https://doi.org/10.4103/aca.ACA_94_19
Mohamad, K., M. Olsson, H. T. A. van Tol, S. Mikko, B. H. Vlamings, G. Andersson, H. Rodríguez-Martínez, B. Purwantara, R. W. Paling, B. Colenbrander, & J. A. Lenstra. 2009. On the origin of Indonesian cattle. PLoS One 4:e5490. https://doi.org/10.1371/journal.pone.0005490
[NRC] National Research Council. 2015. Nutrient Requirements of Beef Cattle, 8th Revised Edition. Nutrient Requirements of Beef Cattle, 8th Revised Edition. 8th Ed. Washington: The National Academies Press. https://doi.org/10.17226/19014
Nijman, I. J., M. Otsen, E. L. C. Verkaar, C. de Ruijter, E. Hanekamp, J. W. Ochieng, S. Shamshad, J. E. O. Rege, M. W. Barwegen, T. Sulawati, & J. A. Lenstra. 2003. Hybridization of Banteng (Bos Javanicus) and Zebu (Bos Indicus) revealed by mitochondrial DNA, satellite DNA, AFLP and microsatellites. Heredity 90:10–16. https://doi.org/10.1038/sj.hdy.6800174
Polák, J. & D. Frynta. 2010. Patterns of sexual size dimorphism in cattle breeds support Rensch’s rule. Evol. Ecol. 24:1255–1266. https://doi.org/10.1007/s10682-010-9354-9
Purwantara, B., R. R. R. Noor, G. Andersson, & H. Rodriguez-Martinez. 2012. Banteng and Bali cattle in Indonesia: Status and forecasts. Reprod. Domest. Anim. 47:2–6. https://doi.org/10.1111/j.1439-0531.2011.01956.x
Rahayu, S. 2014. The reproductive performance of Bali cattle and it’s genetic variation. Berkala Penelitian Hayati 20:28–35. https://doi.org/10.23869/bphjbr.20.1.20145
Rashad, A. & D. EL-Hedainy. 2021. Relationship between coat color and growth performance, carcass characteristics of fattened crossbred male calves. J. Adv. Vet. Res. 11:73–76.
Rashid, S. A., A. K. S. Tomar, M. R. Verma, S. Mehrotra, & P. K. Bharti. 2019. Effect of skin and coat characteristics on growth and milk production traits in Tharparkar cattle. Indian J. Anim. Sci. 89:1251-1254. https://doi.org/10.56093/ijans.v89i11.95882
Reddy, B. V., A. S. Sivakumar, D. W. Jeong, Y. B. Woo, S. J. Park, S. Y. Lee, J. Y. Byun, C. H. Kim, S. H. Cho, & I. Hwang. 2015. Beef quality traits of heifer in comparison with steer, bull and cow at various feeding environments. Anim. Sci. J. 86:1–16. https://doi.org/10.1111/asj.12266
Rossi, G. F., N. M. Bastos, D. P. Vrisman, N. N. Rodrigues, R. Vantini, J. M. Garcia, E. A. R. Dias, F. F. Simili, A. L. Guimarães, R. C. Canesin, M. E. Z. Mercadante, C. de P. Freitas-Dell’Aqua, F. R. F. de Athayde, F. M. Monteiro, & G. Z. Mingoti. 2022. Growth performance, reproductive parameters and fertility measures in young Nellore bulls with divergent feed efficiency. Anim. Reprod. 19:1-16. https://doi.org/10.1590/1984-3143-ar2022-0053
Royo, L. J., I. Álvarez, J. J. Arranz, I. Fernández, A. Rodríguez, L. Pérez-Pardal, & F. Goyache. 2008. Differences in the expression of the ASIP gene are involved in the recessive black coat colour pattern in sheep: Evidence from the rare Xalda sheep breed. Anim. Genet. 39:290–293. https://doi.org/10.1111/j.1365-2052.2008.01712.x
Said, S., W. P. B. Putra, S. Anwar, P. P. Agung, & H. Yuhani. 2017. Phenotypic, morphometric characterization and population structure of Pasundan cattle at West Java, Indonesia. Biodiversitas 18:1638–1645. https://doi.org/10.13057/biodiv/d180443
Sawicka-Zugaj, W., W. Chabuz, & K. Kasprzak-Filipek. 2023. The role of reproduction and genetic variation in polish white-backed cows in the breed restoration process. Animals 13:2790. https://doi.org/10.3390/ani13172790
Schlessinger, D. I., M. D. Anoruo, & J. Schlessinger. 2023. Biochemistry, Melanin. In StatPearls. StatPearls Publishing, Treasure Island (FL). http://www.ncbi.nlm.nih.gov/books/NBK459156/
Simčič, M. & M. Čepon. 2007. Factors affecting actual and adjusted 90-Day, 205-day and 365-day weight of charolais calves. AGRICULTURE: Scientific and Professional Review 13:13.
[SNI] Standar Nasional Indonesia. 2020. Bibit Sapi Potong ─ Bagian 4: Bali. Badan Standar Nasional Indonesia, Jakarta (ID).
Sponenberg, D. P. 2021. Practical Color Genetics for Livestock Breeders. Essex (UK): 5m Books Ltd. https://doi.org/10.52517/9781789181685
Tabun, A. C., T. Hartatik, & S. Sumadi. 2013. Identification of melanocortin 1 receptor (MC1R) gene based on coat color of Bali cows of Kupang by usingthe PCR-Rflp method. J. Indones. Trop. Anim. Agric. 38:86–91. https://doi.org/10.14710/jitaa.38.2.86-91
Tabun, A. C., I. G. N. G. Bidura, I. G. A. Putra, & D. A. Warmadewi. 2022. The body dimensions and body weight gain on Bali calf and cows with different coat colors on the semi-intensive maintenance system in Kupang, Indonesia. GSC Biol. Pharm. Sci. 19:187–195. https://doi.org/10.30574/gscbps.2022.19.2.0193
Tao, H., F. Guo, Y. Tu, B. W. Si, Y. C. Xing, D. J. Huang, & Q. Y. Diao. 2017. Effect of weaning age on growth performance, feed efficiency, nutrient digestibility and blood-biochemical parameters in Droughtmaster crossbred beef calves. Asian-Australas. J. Anim. Sci. 31:864–872. https://doi.org/10.5713/ajas.17.0539
Trigo, B. B., A. T. H. Utsunomiya, A. A. A. D. Fortunato, M. Milanesi, R. B. P. Torrecilha, H. Lamb, L. Nguyen, E. M. ROss, B. Hayes, R. C. M. Padula, T. S. Sussai, L. B. Zavarez, R. S. Cipriano, M. M. T. Caminhas, F. L. Lopes, C. Pelle, T. Leeb, D. Bannasch, D. Bickhart, T. P. L. Smith, T. S. Sonstegard, J. F. Garcia, & Y. T. Utsunomiya. 2021. Variants at the ASIP locus contribute to coat color darkening in Nellore cattle. Genet. Sel. Evol. 53:40. https://doi.org/10.1186/s12711-021-00633-2
Videira, I. F. D. S., D. F. L. M. Moura, & S. Magina. 2013. Mechanisms regulating melanogenesis. An. Bras. Dermatol. 88:76–83. https://doi.org/10.1590/S0365-05962013000100009
West, P. M. & C. Packer. 2002. Sexual selection, temperature, and the lion’s mane. Science 297:1339–1343. https://doi.org/10.1126/science.1073257
Zhang, Y., Q. Li, S. Ye, M. O. Faruque, Y. Yu, D. Sun, S. Zhang, & Y. Wang. 2014. New variants in the melanocortin 1 receptor gene (MC1R) in Asian cattle. Anim. Genet. 45:609–610. https://doi.org/10.1111/age.12160
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.