Development, Quality, and Production Parameters of In Vitro Embryo in Anatolian Water Buffaloes
Abstract
The aim of the study was to determine in vitro embryo development, embryo quality, and in vitro embryo production (IVEP) parameters by using Anatolian water buffaloes (AWB) oocytes. In this study, 184 ovaries of 92 AWB obtained from slaughterhouses were used. The tissue culture medium (TCM-199) was used for in vitro maturation (IVM), Brackett & Oliphant (BO) medium for in vitro fertilization (IVF), and Charles Rosencrans 1 amino acid (CR1aa) medium for in vitro culture (IVC). A total of 395 oocytes (2.15 per ovary) were obtained from the ovaries. Frozen AWB sperm was used for fertilization. The number of cleavages at the 24th hour was 93 out of 302 (30.79%), the number of morulae and compact morula at the 96th hour was 53 out of 302 (17.55%), the number of blastocysts at 7th day was 29 out of 302 (9.60%), and the number of hatched blastocysts were 12 out of 302 (3.97%) on the 8th and 9th days. In the quality assessment of 29 blastocysts recovered on day 7 in IVC, 7 of them (24.13%) were of the code 1 quality, 9 of them (31.03%) were of the code 2 quality, 8 of them (27.50%) were of the code 3 quality, and 5 of them (17.24%) were classified as the code 4 quality. This study provides the first data on in vitro embryo development, embryo quality classification, and embryo production in AWB. As a result, the potential of oocytes AWB for IVEP has been revealed, and a scientific background has been provided for future studies.
References
Akter, I., M. H. Alam, M. N. Islam, A. K. Modak, A. Khatun, & M. Moniruzzaman. 2023. Theophylline enhances in vitro fertilization and embryo production in buffaloes. Trop. Anim. Sci. J. 46:157-162. https://doi.org/10.5398/tasj.2023.46.2.157
Baruselli, P. S., J. G. S. de Carvalho, F. M. Elliff, J. C. B. da Silva, D. Chello, & N. A. T. de Carvalho. 2020. Embryo transfer in buffalo (Bubalus bubalis). Theriogenology 150:221-228. https://doi.org/10.1016/j.theriogenology.2020.01.037
Baruselli, P. S., J. G. Soares, B. M. Bayeux, J. C. Silva, R. D. Mingoti, & N. A. T. D. Carvalho. 2018. Assisted reproductive technologies (ART) in water buffaloes. Animal Reprod. 15:971-983. https://doi.org/10.21451/1984-3143-AR2018-0043
Beck-Fruchter, R., M. Lavee, A. Weiss, Y. Geslevich, & E. Shalev. 2014. Rescue intracytoplasmic sperm injection: A systematic review. Fertil. Steril. 101:690-698. https://doi.org/10.1016/j.fertnstert.2013.12.004
Di Francesco, S., M. V. S. Novoa, D. Vecchio, G. Neglia, L. Boccia, G. Campanile, & B. Gasparrini. 2012. Ovum pick-up and in vitro embryo production (OPU-IVEP) in Mediterranean Italian buffalo performed in different seasons. Theriogenology 77:148-154. https://doi.org/10.1016/j.theriogenology.2011.07.028
Duran, D. H., P. L. H. Duran, P. G. Duran, & L. C. Cruz. 2017. Production of river buffalo (Bubalus bubalis) calves by embryo in vitro production-vitrification and transfer techniques in the Philippines. Buffalo Bulletin 36:607-614. https://kuojs.lib.ku.ac.th/index.php/BufBu/article/view/914
Gasparrini, B. 2002. In vitro embryo production in buffalo species: State of the art. Theriogenology 57:237-256. https://doi.org/10.1016/S0093-691X(01)00669-0
Gasparrini, B., G. Neglia, R. Di Palo, D. Vecchio, & G. Albero. 2014. Influence of oocyte donor on in vitro embryo production in buffalo. Anim. Reprod. Sci. 144:95-101. https://doi.org/10.1016/j.anireprosci.2013.11.010
Hasbi, H., H. Sonjaya, & S. Gustina. 2022. Oocytes population and development competence of bali cattle embryo in vitro with different ovarian reproductive statuses. Trop. Anim. Sci. J. 45:389-396. https://doi.org/10.5398/tasj.2022.45.4.389
Hasler, J. F. & J. P. Barfield. 2021. In vitro fertilization. Bovine Reproduction 1124-1141. https://doi.org/10.1002/9781119602484.ch89
Kaymaz, M. 2015. Çiftlik Hayvanlarında Doğum ve Jinekoloji, Yardımcı Üreme Teknikleri. 2. Baskı, Medipres Matbaacılık Ltd. Şti., Ankara, p. 660-684.
Konrad, J., G. Clérico, M. J. Garrido, G. Taminelli, M. Yuponi, R. Yuponi, & M. Sansinena. 2017. Ovum pick-up interval in buffalo (Bubalus bubalis) managed under wetland conditions in Argentina: Effect onfollicular population, oocyte recovery,and in vitro embryo development. Anim. Reprod. Sci. 183:39-45. https://doi.org/10.1016/j.anireprosci.2017.06.004
Kumar, S., O. Ohashi, W. Vale, L. Melo, & V. Freitas. 2020. State-of-the-art and emerging technologies for in vitro embryo production in buffaloes. J. Adv. Vet. Res. 10:186-192.
Madan, M., M. Chauhan, S. Singla, & R. Manik. 1994. Pregnancies established from water buffalo (Bubalus bubalis) blastocysts derived from in vitro matured, in vitro fertilized oocytes and co-cultured with cumulus and oviductal cells. Theriogenology 42:591-600. https://doi.org/10.1016/0093-691X(94)90376-T
Minervino, A. H. H., M. Zava, D. Vecchio, & A. Borghese. 2020. Bubalus bubalis: A short story. Front. Vet. Sci. 7:570413. https://doi.org/10.3389/fvets.2020.570413
Nandi, S., H. Raghu, B. Ravindranatha, & M. Chauhan. 2002. Production of buffalo (Bubalus bubalis) embryos in vitro: Premises and promises. Reprod. Domest. Anim. 37:65-74. https://doi.org/10.1046/j.1439-0531.2002.00340.x
Özkan Ünal, E., M. İ. Soysal, E. Yüncü, N. D. Dağtaş, & İ. Togan. 2014. Microsatellite based genetic diversity among the three water buffalo (Bubalus bubalis) populations in Turkey. Arch. Anim. Breed. 57:8. https://doi.org/10.7482/0003-9438-57-008
Özşensoy, Y. 2020. Assessment of polymorphism on kappa-casein gene of Anatolian water buffalo breed using the PCR-RFLP method. Turk. J. Vet. Anim. Sci. 44:904-909. https://doi.org/10.3906/vet-2001-3
Palta, P. & M. Chauhan. 1998. Laboratory production of buffalo (Bubalus bubalis) embryos. Reprod. Fertil. Dev. 10:379-392. https://doi.org/10.1071/RD98085
Parrish, J. J. 2014. Bovine in vitro fertilization: In vitro oocyte maturation and sperm capacitation with heparin. Theriogenology 81:67-73. https://doi.org/10.1016/j.theriogenology.2013.08.005
Petersen, B. M., M. Boel, M. Montag, & D. K. Gardner. 2016. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on Day 3. Hum. Reprod. Open 31:2231-2244. https://doi.org/10.1093/humrep/dew188
Puri, G., S. Chaudhary, V. Singh, & A. Sharma. 2015. Effects of fetal bovine serum and estrus buffalo serum on maturation of buffalo (Bubalus bubalis) oocytes in vitro. Vet. World 8:143. https://doi.org/10.14202/vetworld.2015.143-146
Romar, R., H. Funahashi, & P. Coy. 2016. In vitro fertilization in pigs: New molecules and protocols to consider in the forthcoming years. Theriogenology 85:125-134. https://doi.org/10.1016/j.theriogenology.2015.07.017
Rubessa, M., L. Boccia, & S. Di Francesco. 2019. In vitro embryo production in buffalo species (Bubalus bubalis). Comparative Embryo Culture: Methods and Protocols 2006:179-190. https://doi.org/10.1007/978-1-4939-9566-0_13
Ruhil, S. R. S. & G. N. Purohit. 2016. In vitro fertilization of buffalo oocytes matured in vitro in three different media. Indian Journal Animal Reproduction 36:10-13.
Sales, J. N. d. S., L. T. Iguma, R. Batista, C. Quintão, M. Gama, C. d. Freitas, & J. Souza. 2015. Effects of a high-energy diet on oocyte quality and in vitro embryo production in Bos indicus and Bos taurus cows. J. Dairy Sci. 98:3086-3099. https://doi.org/10.3168/jds.2014-8858
Saini, M., Sheoran, S., K. Vijayalakshmy, R. Rajendran, D. Kumar, P. Kumar, & P. S. Yadav. 2020. Semen parameters and fertility potency of a cloned water buffalo (Bubalus bubalis) bull produced from a semen-derived epithelial cell. PLoS One 15:e0237766. https://doi.org/10.1371/journal.pone.0237766
Shang, J., Y. Huang, X. Zhang, F. Huang, & J. Qin. 2007. Effect of β-mercaptoethanol and buffalo follicular fluid on fertilization and subsequent embryonic development of water buffalo (Bubalus bubalis) oocytes derived from in vitro maturation. Ital. J. Anim. Sci. 6:751-754. https://doi.org/10.4081/ijas.2007.s2.751
Smetanina, I. G., L. V. Tatarinova, & A. S. Krivokharchenko. 2019. Use of dibutyryl cyclic adenosine monophosphate in sperm capacitation for in vitro production of bovine embryos. Biology Bulletin 46:327-331. https://doi.org/10.1134/S1062359019040137
Singh, N., G. Dhaliwal, V. Malik, D. Dadarwal, M. Honparkhe, S. Singhal, & P. Brar. 2015. Comparison of follicular dynamics, superovulatory response, and embryo recovery between estradiol based and conventional superstimulation protocol in buffaloes (Bubalus bubalis). Vet. World 8:983-988. https://doi.org/10.14202/vetworld.2015.983-988
Totey, S., G. Singh, M. Taneja, C. Pawshe, & G. Talwar. 1992. In vitro maturation, fertilization and development of follicular oocytes from buffalo (Bubalus bubalis). Reproduction 95:597-607. https://doi.org/10.1530/jrf.0.0950597
Turan, A., H. Yalcintan, A. Orman, & B. Ekiz. 2021. Effects of gender and slaughter age on meat quality of Anatolian water buffaloes. Trop. Anim. Health Prod. 53:1-8. https://doi.org/10.1007/s11250-021-02835-8
Warriach, H., D. McGill, R. Bush, P. Wynn, & K. Chohan. 2015. A review of recent developments in buffalo reproduction-a review. Asian-Australas. J. Anim. Sci. 28:451-455. https://doi.org/10.5713/ajas.14.0259
Volpes, A., F. Sammartano, S. Rizzari, S. Gullo, A. Marino, & A. Allegra. 2016. The pellet swim-up is the best technique for sperm preparation during in vitro fertilization procedures. J. Assist. Reprod. Genet. 33:765-770. https://doi.org/10.1007/s10815-016-0696-2
Yadid, I. M., T. S. Criscuolo, J. F. Santos, & L. A. Giordano. 2022. Can biochemical pregnancy be determined 5 days after frozen-thawed embryo transfer? JBRA Assist. Reprod. 26:62-67. https://doi.org/10.5935/1518-0557.20210054
Yilmaz, O., E. Yazici, A. Kahraman, E. Ozenc, & M. Ucar. 2014. The relationship between ovarian follicle population and follicle size during different stages of estrous cycle in Anatolian Water buffaloes (Bubalus bubalis). Revue Méd. Vét. 165:111-115.
Zhang, Y., L. Colli, & J. Barker. 2020. Asian water buffalo: Domestication, history and genetics. Anim. Genet. 51:177-191. https://doi.org/10.1111/age.12911
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.