Utilization of Dietary Maggot Frass on the Performance, Carcass Percentage, Digestive Organs, and Economic Value of Muscovy Ducks
Abstract
This study aimed to examine the effect of using maggot frass level inclusion in the diet on the performance, digestive organs, immune organs, and economic value of Muscovy Ducks. The study employed a completely randomized design with four treatments and five replications. The treatments used were: T0= 100% basal feed, T1= 80% basal feed + 20% maggot frass, T2= 60% basal feed + 40% maggot frass, and T3= 40% basal feed + 60% maggot frass. This study involved 300 Muscovy ducks aged 4 days, weighing 40.52 ± 4.81 gram/bird, and spanning a rearing period of 8 weeks. The obtained data was subjected to analysis of variance, followed by Duncan’s test (p<0.05) for significance. The results showed that the increase in body weight, final weight, IOFDC, N retention, and carcass percentage decreased along with increasing maggot frass content. There was an increase in feed consumption, AME, TME, and crude fiber digestibility when giving maggot frass. There is a tendency for performance to decrease as the percentage of maggot frass in duck feed increases, but maggot frass can still be used at a percentage of 40%. Based on the study’s findings, the use of maggot frass up to 40% can reduce feed operational costs and positively affect the IOFDC value.
References
Abdel-Hamid, S. E. & E. M. Abdelfattah. 2020. Effect of different dietary protein levels on some behavioral patterns and productive performance of Muscovy duck. Adv. Anim. Vet. Sci. 6:661-667. https://doi.org/10.17582/journal.aavs/2020/8.6.661.667
Adhami, B., A. K. Amirkolaei, H. Oraji, M. Kazemifard, & S. Mahjoub. 2021. Effects of lysophospholipid on rainbow trout (Oncorhynchus mykiss) growth, biochemical indices, nutrient digestibility and liver histomorphometry when fed fat powder diet. Aquac. Nutr. 27:1779-1788. https://doi.org/10.1111/anu.13315
BPS (Badan Pusat Statistik). 2021. Populasi Itik/Itik Manila menurut Provinsi (Ekor), 2020-2022. Badan Pusat Statistik, Jakarta.
Banaszak, M., J. Kuźniacka, J. Biesek, G. Maiorano, & M. Adamski. 2020. Meat quality traits and fatty acid composition of breast muscles from ducks fed with yellow lupin. Animals 14:1969-1975. https://doi.org/10.1017/S1751731120000610
Biesek, J., M. Banaszak, M. Grabowicz, S. Wlaźlak, & M. Adamski. 2022. Production efficiency and utility features of broiler ducks fed with feed thinned with wheat grain. Animals 12:3427. https://doi.org/10.3390/ani12233427
Castillo, A., A. Schiavone, M. G. Cappai, J. Nery, M. Gariglio, S. Sartore, A. Franzoni, & M. Marzoni. 2020. Performance of slow growing male Muscovy ducks exposed to different dietary levels of quebracho tannin. Animals 10:979. https://doi.org/10.3390/ani10060979
Dela Cruz, P. J. D., C. T. Dagaas, K. M. M. Mangubat, A. A. Angeles, & O. D. Abanto. 2019. Dietary effects of commercial probiotics on growth performance, digestibility, and intestinal morphometry of broiler chickens. Trop. Anim. Health Prod. 51:1105-1115. https://doi.org/10.1007/s11250-018-01791-0
Farghly, M. F. A., M. E. Abd El-Hack, M. Alagawany, L. M. Saadeldin, & A. A. Swelum. 2018. Wet feed and cold water as heat stress modulators in growing Muscovy ducklings. Poult. Sci. 97:1588-1594. https://doi.org/10.3382/ps/pey006
Fouad, A. M. & H. K. E. Senousey. 2014. Nutritional factors affecting abdominal fat deposition in poultry. Asian Australas. J. Anim. Sci. 27:1057–1068. https://doi.org/10.5713/ajas.2013.13702
Gariglio, M., S. Dabbou, L. Biasato, M. T. Capucchio, E. Colombino, F. Hernández, J. Madrid, S. Martínez, F. Gai, C. Caimi, S. B. Oddon, M. Meneguz, A. Trocino, R. Vincenzi, L. Gasco, & A. Schiavone. 2019. Nutrional effects of the dietary inclusion of partially deffated Hermetia illucens larva meal in Muscovy duck. J. Anim. Sci. Biotechnol. 10:37. https://doi.org/10.1186/s40104-019-0344-7
Gariglio, M., S. Dabbou, F. Gai, A. Trocino, G. Xiccato, M. Holodova, L. Gresakova, J. Nery, S. Bellezza Oddon, I. Biasato, L. Gasco, & A. Schiavone. 2021. Black soldier fly larva in Muscovy duck diets: Effect of duck growth, carcass, property and meat quality. Poult. Sci. 100:101303. https://doi.org/10.1016/j.psj.2021.101303
Ge, X. K., A. A. Wang, Z. X. Ying, L. G. Zhang, W. P. Su, K. Cheng, C. C. Feng, Y. M. Zhou, L. L. Zhang, & T. Wang. 2019. Effects of diets with different energy and bile acids levels on growth performance and lipid metabolism in broilers. Poult. Sci. 98:887-895. https://doi.org/10.3382/ps/pey434
Ibrahim, D., A. A. Hasan, A. H. Arisha, M. A. L. Reda, Azis, W. R. I. A. S. Sherief, S. H. Adil, R. E. Sayed, & A. E. Metwally. 2020. Impact of feeding anaerobically fermented feed supplemented with acidifiers on its quality and growth performance, intestinal villi and enteric pathogens of mulard ducks. Livest. Sci. 242:104299. https://doi.org/10.1016/j.livsci.2020.104299
Klammsteiner, T., V. Turan, M. Fernández-Delgado Juárez, S. Oberegger, & H. Insam. 2020. Suitability of black soldier fly frass as soil amendment and implication for organic waste hygienization. Agronom. 10:1578. https://doi.org/10.3390/agronomy10101578
Kokoszyński, D., M. Saleh, Z. Bernacki, M. Kotowicz, M. Sobczak, J. Z. Kujawska, & K. Stęczny. 2018. Digestive tract morphometry and breast muscle microstructure in spent breeder ducks maintainedin a conservation programme of genetic resources. Arch. Anim. Breed. 61:373-378. https://doi.org/10.5194/aab-61-373-2018
Kokoszyński, D., R. Wasilewski, M. Saleh, D. Piwczyński, H. Arpášová, C. Hrnčar, & M. Fik. 2019. Growth performance, body measurements, carcass and some internal organs characteristics of Pekin ducks. Animals 9:963. https://doi.org/10.3390/ani9110963
Kumar, P., A. K. Patra, G. P. Mandal, I. Samanta, & S. Pradhan. 2017. Effect of black cumin seeds on growth performance, nutrient utilization, immunity, gut health and nitrogen excretion in broiler chickens. J. Sci. Food Agric. 11:3742-3751. https://doi.org/10.1002/jsfa.8237
Linh, N., N. T. K. Dong, & N. V Thu. 2022. Effect of dietary lysine and energy on apparent nutrient, nitrogen, and amino acids digestibility of Local Muscovy Ducks. Adv. Anim. Vet. Sci. 10:253–262. https://doi.org/10.17582/journal.aavs/2022/10.2.253.262
Liu, Z. L., X. F. Huang, Y. Luo, J. J. Xue, Q. G. Wang, Y. M. Wang, & C. Wang. 2019. Effect of dry and wet feed on growth performance, carcass traits, and apparent nutrient digestibility in geese. J. Appl. Poult. Res. 4:1115-1120. https://doi.org/10.3382/japr/pfz074
Matin, N., P. Utterback, & C. M. Parsons. 2021. True Metabolizable energy and amino acid digestibility in black soldier fly larvae meals, cricket meal, and mealworms using a precision fed roster assay. Poult. Sci. 100:101146. https://doi.org/10.1016/j.psj.2021.101146
Marco, A., R. R. Ramzy, & H. Ji. 2021. Influence of substrate inclusion of quail manure on the growth performance, body composition, fatty acid and amino acid profiles of black soldier fly larvae (Hermetia illucens). Sci. Total Environ. 772:145528. https://doi.org/10.1016/j.scitotenv.2021.145528
Mulatu, K., N. Ameha, & M. Girma. 2019. Effect of feeding different levels of baker’s yeast on performance and hematological parameters in broiler chickens. J. Worlds Poult. Res. 9:38–49. https://doi.org/10.36380/jwpr.2019.5
Naderinejad, S., F. Zaefarian, M. R. Abdollahi, A. Hassanabadi, H. Kermanshahi, & V. Ravindran. 2016. Influence of feed form and particle size on performance, nutrient utilisation, and gastrointestinal tract development and morphometry in broiler starters fed maize-based diets. Anim. Feed Sci. Technol. 215:92-104. https://doi.org/10.1016/j.anifeedsci.2016.02.012
Nha, P. T. & L. T. Thuy. 2022. Effects of supplementing shrimp soluble hydrolyte extracts on growth performance and digestion of hoa lan ducks. Adv. Anim. Vet. Sci. 2:286-291. https://doi.org/10.17582/journal.aavs/2022/10.2.286.291
Park, J. & J. B. Carey. 2019. Dietary enzyme supplementation in duck nutrition. J. Appl. Poult. Res. 28:587–597. https://doi.org/10.3382/japr/pfz041
Purkayastha, D. & S. Sarkar. 2019. Physicochemical structure analysis of chitin extracted from pupa exuviae and dead imago of wild black soldier fly (hermetia illucens). J. Polym. Environ. 28:445-457. https://doi.org/10.1007/s10924-019-01620-x
Rotiah, R., E. Widiastuti, & D. Sunarti. 2019. Relative weight of small intestine and lymphoid organ of finisher period broiler chicken at different rearing temperatures. J. Appl. Anim. Res. 1:6-10. https://doi.org/10.22219/aras.v1i1.8299
Rungruangsaphakun, J., M. Nakphaichit, & S. Keawsompong. 2022. Nutritional improvement of copra meal for swine feed. Biocatal. Agric. Biotechnol. 39:102273. https://doi.org/10.1016/j.bcab.2021.102273
Song, M., F. Zhang, L. Chen, Q. Yang, H. Su, X. Yang, H. He, M. Ling, J. Zheng, C. Duan, & X. Lai. 2021. Dietary chenodeoxycholic acid improves growth performance and intestinal health by altering serum metabolic profiles and gut bacteria in weaned piglets. Anim. Nutr. 7:365-375. https://doi.org/10.1016/j.aninu.2020.07.011
Song, S., A. W. Liang, J. K. N. Tan, J. C. Cheong, Z. Chiam, S. Arora W. N. Lam, & T. H. T. Wan. 2021. Upcycling food waste using black soldier fly larvae: Effects of futher composting on Frass quality, fertilising effect and its global warming potensial. J. Clean. Prod. 288:125664. https://doi.org/10.1016/j.jclepro.2020.125664
Tadjong, R. N., K. J. Raphael, Y. M. D. Doriane, K. Yves, E. N. L. Wilfried, & T. Alexis. 2020. Growth performance of muscovy ducks (Cairina moschata) fed palm kernel meal based diets. Open J. Anim. Sci. 10:346-361. https://doi.org/10.4236/ojas.2020.103021
Tanwiriah, W., Nurlina, D. Garnida, & Sujana. 2019. Performance and income over feed cost of rambon duck that given the ration containing gold snail (Pomaceae canaliculata) and noni fruit (Morinda cifrifolia L) flour. IOP Conf. Ser. Earth Environ. Sci. 334:012009. https://doi.org/10.1088/1755-1315/334/1/012009
Utama, C. S., B. Sulistiyanto, B. Marifah, & R. I. Cahya. 2023a. The organoleptic, chemical and microbiological quality of maggot frass, as alternative poultry feed ingredient. Online Journal Animal Feed Research 13:340–347. https://doi.org/10.51227/ojafr.2023.49
Utama, C. S., B. Sulistiyanto, & M. F. Haidar. 2023b. The feasibility of Sorghum (Sorghum vulgare) fodder as poultry feed ingredients seen from growth performance, nutrient content and fiber profile of Sorghum fodder. J. Adv. Vet. Anim. Res. 10:222-227. https://doi.org/10.5455/javar.2023.j672
Wang, S., L. I. Chen, M. He, J. Shen, G. Li, Z. Tao, R. Wu, & L. Lu. 2018. Different rearing conditions alter gut microbiota composition and host physiology in shaoxing ducks. Sci. Rep. 1:7387. https://doi.org/10.1038/s41598-018-25760-7
Wang, H., X. F. Zhang, S. S. Zhai, J. J. Yuan, W. C. Wang, Y. W. Zhu, & L. Yang. 2021. The comparative study of energy utilization in feedstuffs for Muscovy ducks between in vivo and in vitro. Poult Sci. 100:1004–1007. https://doi.org/10.1016/j.psj.2020.11.037
Wei, J., M. Xie, J. Tang, Y.B. Wu, Q. Zhang, & S. S. Hou. 2020. The feasibility of enzyme hydrolysate gross energy for formulating duck feeds. Poult. Sci. 99:3941-3947. https://doi.org/10.1016/j.psj.2020.03.046
Xie, M., R. Z. Meng, J. Tang, M. Guo., W. Huang, & Zhang. 2023. Apparent metyabolizable energy requirement of feed-restricted white pekin duck breeder pullets. Anim. Feed Sci. Technol. 295:115508. https://doi.org/10.1016/j.anifeedsci.2022.115508
Zhang, H., J. Ma, K. Tang, & B. Huang. 2021. Beyond energy storage: Roles of glycogen metabolism in health and disease. FEBS J. 288:3772-3783. https://doi.org/10.1111/febs.15648
Zhong, Y. F., C. M. Shi, Y. L. Zhou, Y. J. Chen, S. M. Lin, & R. J. Tang. 2020. Optimum dietary fiber level could improve growth, plasma biochemical indexes and liver function of largemouth bass, Micropterus salmoides. Aquaculture. 518:734661. https://doi.org/10.1016/j.aquaculture.2019.734661
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.