Nutrient Digestibility, N Balance, Performance, and Blood Parameters of Kacang Goats Differing in GDF9 Genotype Fed Different Sources of Dietary Fiber
Abstract
This study aims to determine the impact of different GDF9 genotypes on feed intake, nutrient digestibility, and nitrogen balance in Kacang goats by examining various metabolic processes. Twenty-nine Kacang goats were genotyped using PCR-RFLP DNA at position g.3855A/C of the GDF9 gene in exon 2. A 2 × 2 factorial design with two factors, namely, diet type (diets 1 and 2) and genotype (homozygote AA and heterozygote AC), was adopted. Diet 1 group comprised 11 goats with the AA genotype and 4 goats with the AC genotype, and the diet 2 group consisted of 9 goats with the AA genotype and 5 goats with the AC genotype. Both diets had the same protein content (iso-protein) and consisted of free-choice Napier grass (Pennisetum purpureum). Diet 1 had an additional 400 g of concentrate containing 11.25% crude protein (CP) and 55.86% total digestible nutrients (TDN). Diet 2 was a total mixed ration (TMR) containing 12.46% crude protein and 67.92% TDN. Results demonstrated a significant interaction (p<0.05) effect between diet and genotype on crude protein (CP) digestibility, neutral detergent fiber (NDF) digestibility, fecal nitrogen (N feces), urinary nitrogen (N urine), nitrogen retention (%), and blood urea nitrogen (BUN). However, no significant interaction effect was observed on the consumption of dry matter (DM), CP, crude fiber (CF), nitrogen free extract (NFE), and NDF and the digestibility of DM, CF, and NFE. TMR resulted in a 9% higher consumption of NDF, higher nutrient digestibility, improved nitrogen balance, average daily gain (ADG), and elevated glucose levels compared with diet 1. Kacang goats with the AC genotype exhibited better CP digestibility and increased nitrogen intake than those with the AA genotype. In conclusion, the GDF9 genotype influences the nutrient digestibility in Kacang goats, and those with the AC genotype utilize feed nutrients more efficiently than those with the AA genotype. The AC genotype resulting from the GDF9 gene mutation at position g.3855A>C can be used for genomic marker selection of high-quality Kacang goats in nutrient digestibility.
References
Ahlawat, S., R. Sharmaa, M. Roy, S. Mandakmale, V. Prakash, & M. S. Tantia. 2016. Genotyping of novel SNPs in BMPR1B, BMP15, and GDF9 genes for association with prolificacy in seven Indian goat breeds. Anim. Biotechnol. 27:199–207. https://doi.org/10.1080/10495398.2016.1167706
Al-Thuwaini, T. 2020. Association between polymorphism in BMP15 and GDF9 genes and impairing female fecundity in diabetes type 2. Middle East Fertil. Soc. J. 25:25. https://doi.org/10.1186/s43043-020-00032-5
Alves, J. P. M., C. C. L. Fernandes, C. E. M. Calderón, R. Rossetto, M. Bertolini, & D. Rondina. 2021. Short-term supplementation of diets rich in lipids or glycogen precursors can affect intra-follicular environment, oocyte mitochondrial gene expression, and embryo development following parthenogenesis in goat. Small Rumin. Res. 194:106279. https://doi.org/10.1016/j.smallrumres.2020.106279
AOAC. 2000. Official Methods of Analysis. 17th ed. Association of Official Analytical Chemist, Arlington, VA, USA.
Avondo, M., A. Di Trana, B. Valenti, A. Criscione, S. Bordonaro, A. De Angelis, D. Giorgio, & P. Di Gregorio. 2019. Leptin gene polymorphism in goats fed with diet at different energy level: Effects on feed intake, milk traits, milk fatty acids composition, and metabolic state. Animals 9:1–9. https://doi.org/10.3390/ani9070424
Biehl, M. V., A. V. Pires, D. de D. Nepomuceno, F. M. da Rocha, & E. M. Ferreira. 2011. Nutritional aspects of reproduction in beef cattle. Veterinária e Zootecnia 18:168–175. https://www.cabidigitallibrary.org/doi/full/10.5555/20143345299
Botstein, D., R. L. White, M. Skolnick, & R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314.
Celikeloglu, K., M. Tekerli, M. Erdogan, S. Kocak, O. Hacan, & Z. Bozkurt. 2021. An investigation of the effects of BMPR1B, BMP15, and GDF9 genes on litter size in Ramlıç and Dağlıç sheep. Arch. Anim. Breed. 64:223–230. https://doi.org/10.5194/aab-64-223-2021
Chairunissa, F. A. Z., S. Bintara, & T. Hartatik. 2022. Single nucleotide polymorphism of partial GDF9 gene in three local goat of Indonesia compare with several goat in Asia. Buletin Peternak. 46:41-45. https://doi.org/10.21059/buletinpeternak.v46i1.67188
Decandia, M., M. Sitzia, A. Cabiddu, D. Kababya, & G. Molle. 2000. The use of polyethylene glycol to reduce the anti-nutritional effects of tannins in goats fed woody species. Small Rumin. Res. 38:157–164. https://doi.org/10.1016/S0921-4488(00)00145-0
Dupont, J. & R. J. Scaramuzzi. 2016. Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem. J. 473:1483–1501. https://doi.org/10.1042/BCJ20160124
Feng, T., C. X. Geng, X. Z. Lang, M. X. Chu, G. L. Cao, R. Di, L. Fang, H. Q. Chen, X. L. Liu, & N. Li. 2011. Polymorphisms of caprine GDF9 gene and their association with litter size in Jining Grey goats. Mol. Biol. Rep. 38:5189–5197. https://doi.org/10.1007/s11033-010-0669-y
Gallet, C., J. Dupont, B. K. Campbell, D. Monniaux, D. Guillaume, & R. J. Scaramuzzi. 2011. The infusion of glucose in ewes during the luteal phase increases the number of follicles but reduces oestradiol production and some correlates of metabolic function in the large follicles. Anim. Reprod. Sci. 127:154–163. https://doi.org/10.1016/j.anireprosci.2011.07.017
Garibyan, L. & N. Avashia. 2013. Polymerase chain reaction. J. Invest. Dermatol. 133:1–4. https://doi.org/10.1038/jid.2013.1
Gordon, F. J., M. G. Porter, C. S. Mayne, E. F. Unsworth, & D. J. Kilpatrick. 1995. Effect of forage digestibility and type of concentrate on nutrient utilization by lactating dairy cattle. J. Dairy Res. 62:15–27. https://doi.org/10.1017/S002202990003363X
Grazul-Bilska, A. T., E. Borowczyk, J. J. Bilski, L. P. Reynolds, D. A. Redmer, J. S. Caton, & K. A. Vonnahme. 2012. Overfeeding and underfeeding have detrimental effects on oocyte quality measured by in vitro fertilization and early embryonic development in sheep. Domest. Anim. Endocrinol. 43:289–298. https://doi.org/10.1016/j.domaniend.2012.05.001
Hartatik, T., F. A. Z. Chairunissa, S. Bintara, F. J. Fadilllah, N. P. Ningrum, & D. Puspitasari. 2023. Mutation analysis and restriction site mapping of GDF9 in Indonesian bligon goat. Trop. Anim. Sci. J. 46:163–171. https://doi.org/10.5398/tasj.2023.46.2.163
Hartl, D. L. & A. G. Clark. 1997. Principles of Population Genetics. Sinauer Associates, Sunderland, Massachusetts.
Joysowal, M., A. K. Tyagi, N. Tyagi, S. Kumar, A. Keshri, & D. Singh. 2019. Use of slow release ammonia products in ruminant diet: A review. J. Entomol. Zool. Stud. 7:882–888.
Kand, D., J. Castro-Montoya, N. Selje-Assmann, & U. Dickhoefer. 2021. The effects of rumen nitrogen balance on intake, nutrient digestibility, chewing activity, and milk yield and composition in dairy cows vary with dietary protein sources. J. Dairy Sci. 104:4236–4250. https://doi.org/10.3168/jds.2020-19129
Kardos, M., G. Luikart, & F. W. Allendorf. 2015. Measuring individual inbreeding in the age of genomics: Marker-based measures are better than pedigrees. Heredity (Edinb). 115:63–72. https://doi.org/10.1038/hdy.2015.17
Khalil, A. Bachtiar, & Evitayani. 2019. Reproductive performance of female Kacang goats supplemented by mineral under a tethering feeding system. Trop. Anim. Sci. J. 42:215–223. https://doi.org/10.5398/tasj.2019.42.3.215
Latifah, L., D. Maharani, A. Kustantinah, & T. Hartatik. 2018. Association of melanocortin 4 receptor gene polymorphism with growth traits in Bligon goat. J. Indones. Trop. Anim. Agric. 43:343–351. https://doi.org/10.14710/jitaa.43.4.343-351
Licona, G. V. J., C. C. F. Monteiro, F. F. R. Carvalho, A. F. Souza, F. G. Souza, A. M. N. Corrêa, E. Q. L. Vasconcelos, F. L. T. Mesquita, M. A. S. Gama, & M. A. Ferreira. 2022. Productive responses of dairy goats fed on diets containing elephant grass (Pennisetum purpureum) associated or not with cactus (Opuntia stricta) cladodes, and extra-fat whole corn germ as a substitute for corn. Small Rumin. Res. 207. https://doi.org/10.1016/j.smallrumres.2021.106609
Ma, L., Y. Chen, S. Mei, C. Liu, X. Ma, Y. Li, Y. Jiang, L. Ha, & X. Xu. 2015. Single nucleotide polymorphisms in premature ovarian failure-associated genes in a Chinese Hui population.. Mol. Med. Rep. 12:2529–2538. https://doi.org/10.3892/mmr.2015.3762
Mahgoub, O., C. D. Lu, & R. J. Early1. 2000. Effects of dietary energy density on feed intake, body weight gain and carcass chemical composition of Omani growing lambs. Small Rumin. Res. 37:35–42. https://doi.org/10.1016/S0921-4488(99)00132-7
Malik, M. I., M. A. Rashid, M. S. Yousaf, S. Naveed, K. Javed, & H. Rehman. 2020. Effect of physical form and level of wheat straw inclusion on growth performance and blood metabolites of fattening goat. Animals 10:1–11. https://doi.org/10.3390/ani10101861
Moran, J. 2005. Tropical Dairy Farming: Feeding Management for Small Holder Dairy Farmers in the Humid Tropics. Csiro publishing. https://doi.org/10.1071/9780643093133
Mulyono, S. 2008. Penggemukan Kambing Potong. Niaga Swadaya.
National Research Council (NRC). 2007. Nutrient Requirements of Small Ruminants Sheep, Goats, Cervids, and New World Camelids. The National Academies Press, Washington, DC, USA.
Nei, M. & S. Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York. https://doi.org/10.1093/oso/9780195135848.001.0001
Novo, L. C., A. Gondo, R. C. Gomes, J. A. F. Junior, M. N. Ribas, L. F. Brito, M. M. M. Laureano, C. V. Araújo, & G. R. O. Menezes. 2021. Genetic parameters for performance, feed efficiency, and carcass traits in Senepol heifers. Animal 15. https://doi.org/10.1016/j.animal.2020.100160
Pedersen, L. D., A. C. Sørensen, & P. Berg. 2009. Marker-assisted selection can reduce true as well as pedigree-estimated inbreeding. J. Dairy Sci. 92:2214–2223. https://doi.org/10.3168/jds.2008-1616
Piola J. W., E. L. de A. Ribeiro, I. Y. Mizubuti, L. das D. F. da Silva, C. L. de Sousa, & F. H. P. de Paiva. 2009. Levels of energy in the feeding of feedlot lambs and the regional and tissue carcass composition. Revista Brasileira Zootecnia 38:1797–1802. https://doi.org/10.1590/S1516-35982009000900023
Qin, Y., X. Jiao, J. L. Simpson, & Z.-J. Chen. 2015. Genetics of primary ovarian insufficiency: New developments and opportunities. Hum. Reprod. Update 21:787–808. https://doi.org/10.1093/humupd/dmv036
Santoso, B., B. Mwenya, C. Sar, & J. Takahashi. 2006. Ruminal fermentation and nitrogen metabolism in sheep fed a silage-based diet supplemented with Yucca schidigera or Y. schidigera and nisin. Anim. Feed Sci. Technol. 129:187–195. https://doi.org/10.1016/j.anifeedsci.2006.01.001
Scaramuzzi, R. J., B. K. Campbell, J. A. Downing, N. R. Kendall, M. Khalid, M. Muñoz-Gutiérrez, & A. Somchit. 2006. A review of the effects of supplementary nutrition in the ewe on the concentrations of reproductive and metabolic hormones and the mechanisms that regulate folliculogenesis and ovulation rate. Reprod. Nutr. Dev. 46:339–354. https://doi.org/10.1051/rnd:2006016
Scaramuzzi, R. J., N. Zouaïdi, J.-B. Menassol, & J. Dupont. 2015. The effects of intravenous, glucose versus saline on ovarian follicles and their levels of some mediators of insulin signalling. Reprod. Biol. Endocrinol. 13:6. https://doi.org/10.1186/1477-7827-13-6
Van Soest, P. J., J. B. Robertson, & B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Teleni, E., J. B. Rowe, K. P. Croker, P. J. Murray, & W. R. King. 1989. Lupins and energy-yielding nutrients in ewes. II. Responses in ovulation rate in ewes to increased availability of glucose, acetate and amino acids.. Reprod. Fertil. Dev. 1:117–125. https://doi.org/10.1071/RD9890117
Valle, F. R. A. F., C. A. A. Fontes, A. M. Fernandes, T. S. Oliveira, E. F. Processi, & R. S. T. Silva. 2020. Performance, digestibility, microbial protein synthesis, and body composition of Brangus x Zebu steers on tropical pasture receiving supplementation. Trop. Anim. Health Prod. 52:2491–2498. https://doi.org/10.1007/s11250-020-02278-7
Vijay, L., A. K. Sinha, S. K. Sinha, & S. Swati. 2016. Effect of feeding tamarind (Tamarindus indica) seed meal on nutrient intake, its utilization and growth in crossbred kids. Indian Journal Small Ruminants 22:182–185. https://doi.org/10.5958/0973-9718.2016.00044.1
Wang, X., Q. Yang, K. Wang, H. Yan, C. Pan, H. Chen, J. Liu, H. Zhu, L. Qu, & X. Lan. 2019. Two strongly linked single nucleotide polymorphisms (Q320P and V397I) in GDF9 gene are associated with litter size in cashmere goats. Theriogenology 125:115–121. https://doi.org/10.1016/j.theriogenology.2018.10.013
Webb, R., P. C. Garnsworthy, J. G. Gong, & D. G. Armstrong. 2004. Control of follicular growth: Local interactions and nutritional influences. J. Anim. Sci. 82:E63–E74.
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.