Effect of Dietary Supplementation of Arginine, Tryptophan, and Taurine on Productive Performance, Egg Quality, and Health Status of Laying Hens Raised Under Heat Stress Conditions
Abstract
The objective of this experiment was to investigate the effect of dietary supplementation of arginine (Arg), tryptophan (Trp), and taurine (Tau) on productive performance, egg quality, liver visual characteristics, antioxidant status, immune response, and stress indicator of laying hens raised under heat stress conditions. A total of two hundred eighty 47-wk-old Hy-Line Brown laying hens were randomly allotted to 1 of 4 dietary treatments with 7 replicates consisting of 10 cages per replicate. A basal diet (BD) was prepared to meet or exceed nutrient requirement estimates. Two additional diets were formulated to increase either digestible Arg or Trp by 50% greater than the BD. Finally, one more diet was prepared by adding 0.5% Tau to the BD. The experimental diets were fed to hens on an ad libitum basis for 8 wk. Average room temperature and relative humidity were maintained at 30.7±1.41°C and 72.5±11.61%, respectively. Results indicated that laying hens in Arg and Trp treatments tended (p= 0.06) to have a higher egg yolk color (Roche color fan) than those in the Tau treatment. Likewise, there was a tendency (p= 0.05) for a lower liver color score in the Tau treatment than Arg and Trp treatments. In conclusion, dietary supplementation of Arg, Trp, and Tau at the current levels (0.37% SID Arg, 0.075% SID Trp, and 0.5% Tau) in diets has no positive effects on productive performance, egg quality, liver visual characteristics, antioxidant status, immune response, and stress indicators of laying hens raised under the current heat stress conditions.
References
Abdel-Moneim, A. M. E., A. M. Shehata, R. E. Khidr, V. K. Paswan, N. S. Ibrahim, A. A. El-Ghoul, S. A. Aldhumri, S. A. Gabr, N. M. Mesalam, A. M. Elbaz, M. A. Elsayed, M. M. Wakwak, & T. A. Ebeid. 2021. Nutritional manipulation to combat heat stress in poultry–A comprehensive review. J. Therm. Biol. 98:102915. https://doi.org/10.1016/j.jtherbio.2021.102915
Akbarian, A., J. Michiels, J. Degroote, M. Majdeddin, A. Golian, & S. De Smet. 2016. Association between heat stress and oxidative stress in poultry: Mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 7:37. https://doi.org/10.1186/s40104-016-0097-5
Akhavan-Salamat, H. & H. A. Ghasemi. 2016. Alleviation of chronic heat stress in broilers by dietary supplementation of betaine and turmeric rhizome powder: Dynamics of performance, leukocyte profile, humoral immunity, and antioxidant status. Trop. Anim. Health Prod. 48:181-188. https://doi.org/10.1007/s11250-015-0941-1
Balnave, D. & S. K. Muheereza. 1997. Improving eggshell quality at high temperatures with dietary sodium bicarbonate. Poult. Sci. 76:588-593. https://doi.org/10.1093/ps/76.4.588
Barrett, N. W., K. Rowland, C. J. Schmidt, S. J. Lamont, M. F. Rothschild, C. M. Ashwell, & M. E. Persia. 2019. Effects of acute and chronic heat stress on the performance, egg quality, body temperature, and blood gas parameters of laying hens. Poult. Sci. 98:6684-6692. https://doi.org/10.3382/ps/pez541
Bartlett, J. R. & M. O. Smith. 2003. Effects of different levels of zinc on the performance and immunocompetence of broilers under heat stress. Poult. Sci. 82:1580-1588. https://doi.org/10.1093/ps/82.10.1580
Bonnet, S., P. A. Geraert, M. Lessire, B. Carré, & S. Guillaumin. 1997. Effect of high ambient temperature on feed digestibility in broilers. Poult. Sci. 76:857-863. https://doi.org/10.1093/ps/76.6.857
Brugaletta, G., J. Teyssier, S. J. Rochell, S. Dridi, & F. Sirri. 2022. A review of heat stress in chickens. Part I: Insights into physiology and gut health. Front. Physiol. 13:934381. https://doi.org/10.3389/fphys.2022.934381
Cassol, O. J., G. T. Rezin, F. C. Petronilho, G. Scaini, C. L. Gonçalves, G. K. Ferreira, R. Roesler, G. Schwartsmann, F. Dal-Pizzol, & E. L. Streck. 2010. Effects of N-acetylcysteine/deferoxamine, taurine and RC-3095 on respiratory chain complexes and creatine kinase activities in rat brain after sepsis. Neurochem. Res. 35:515-521. https://doi.org/10.1007/s11064-009-0089-3
Chamruspollert, M., G. M. Pesti, & R. I. Bakalli. 2004. Influence of temperature on the arginine and methionine requirements of young broiler chicks. J. Appl. Poult. Res. 13:628-638. https://doi.org/10.1093/japr/13.4.628
Choi, Y. I., H. J. Ahn, B. K. Lee, S. T. Oh, B. K. An, & C. W. Kang. 2012. Nutritional and hormonal induction of fatty liver syndrome and effects of dietary lipotropic factors in egg-type male chicks. Asian-Australas. J. Anim. Sci. 25:1145-1152. https://doi.org/10.5713/ajas.2011.11418
Christen, S., E. Peterhans, & R. Stocker. 1990. Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. PNAS. Nexus 87:2506-2510. https://doi.org/10.1073/pnas.87.7.2506
Cryer, A. 1981. Tissue lipoprotein lipase activity and its action in lipoprotein metabolism. Int. J. Biochem. 13:525-541. https://doi.org/10.1016/0020-711X(81)90177-4
Del Angel-Meza, A. R., A. J. Dávalos-Marín, L. L. Ontiveros-Martinez, G. G. Ortiz, C. Beas-Zarate, V. Chaparro-Huerta, B. M. Torres-Mendoza, & O. K. Bitzer-Quintero. 2011. Protective effects of tryptophan on neuro-inflammation in rats after administering lipopolysaccharide. Biomed. Pharmacother. 65:215-219. https://doi.org/10.1016/j.biopha.2011.02.008
Deroee, A. F., M. Naraghi, A. F. Sontou, M. R. Ebrahimkhani, & A. R. Dehpour. 2009. Nitric oxide metabolites as biomarkers for follow-up after chronic rhinosinusitis surgery. Am. J. Rhinol. Allergy 23:159-161. https://doi.org/10.2500/ajra.2009.23.3289
Diaz, G. J., E. J. Squires, & R. J. Julian. 1999. The use of selected plasma enzyme activities for the diagnosis of fatty liver-hemorrhagic syndrome in laying hens. Avian Dis. 768-773. https://doi.org/10.2307/1592746
Dong, X. Y., M. M. M. Azzam, W. Rao, D. Y. Yu, & X. T. Zou. 2012. Evaluating the impact of excess dietary tryptophan on laying performance and immune function of laying hens reared under hot and humid summer conditions. Br. Poult. Sci. 53:491-496. https://doi.org/10.1080/00071668.2012.719149
El Hadi, H. & A. H. Sykes. 1982. Thermal panting and respiratory alkalosis in the laying hen. Br. Poult. Sci. 23:49-57. https://doi.org/10.1080/00071688208447928
Emami, N. K., U. Jung, B. Voy, & S. Dridi. 2021. Radical response: effects of heat stress-induced oxidative stress on lipid metabolism in the avian liver. Antioxidants 10:35. https://doi.org/10.3390/antiox10010035
Estévez, M. 2015. Oxidative damage to poultry: from farm to fork. Poult. Sci. 94:1368-1378. https://doi.org/10.3382/ps/pev094
Farag, M. R. & M. Alagawany. 2018. Physiological alterations of poultry to the high environmental temperature. J. Therm. Biol. 76:101-106. https://doi.org/10.1016/j.jtherbio.2018.07.012
Franco-Jimenez, D. J. & M. M. Beck. 2007. Physiological changes to transient exposure to heat stress observed in laying hens. Poult. Sci. 86:538-544. https://doi.org/10.1093/ps/86.3.538
Franco-Jimenez, D. J., S. E. Scheideler, R. J. Kittok, T. M. Brown-Brandl, L. R. Robeson, H. Taira, & M. M. Beck. 2007. Differential effects of heat stress in three strains of laying hens. J. Appl. Poult. Res. 16:628-634. https://doi.org/10.3382/japr.2005-00088
Gross, W. B. & H. S. Siegel. 1983. Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian Dis. 972-979. https://doi.org/10.2307/1590198
Gu, Y. F., Y. P. Chen, R. Jin, C. Wang, C. Wen, & Y. M. Zhou. 2021. Age-related changes in liver metabolism and antioxidant capacity of laying hens. Poult. Sci. 100:101478. https://doi.org/10.1016/j.psj.2021.101478
Habibian, M., G. Sadeghi, S. Ghazi, & M. M. Moeini. 2015. Selenium as a feed supplement for heat-stressed poultry: A review. Biol. Trace Elem. Res. 165:183-193. https://doi.org/10.1007/s12011-015-0275-x
Habibian, M., S. Ghazi, M. M. Moeini, & A. Abdolmohammadi. 2014. Effects of dietary selenium and vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions. Int. J. Biometeorol. 58:741-752. https://doi.org/10.1007/s00484-013-0654-y
Hafeez, A., W. Akram, A. Sultan, Y. Konca, T. Ayasan, S. Naz, W. Shahzada, & R. U. Khan. 2021. Effect of dietary inclusion of taurine on performance, carcass characteristics and muscle micro-measurements in broilers under cyclic heat stress. Ital. J. Anim. Sci. 20:872-877. https://doi.org/10.1080/1828051X.2021.1921627
He, X., Z. Lu, B. Ma, L. Zhang, J. Li, Y. Jiang, G. Zhou, & F. Gao. 2019. Effects of dietary taurine supplementation on growth performance, jejunal morphology, appetite-related hormones, and genes expression in broilers subjected to chronic heat stress. Poult. Sci. 98:2719-2728. https://doi.org/10.3382/ps/pez054
Hosseini-Vashan, S. J., A. Golian, & A. Yaghobfar. 2016. Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace. Int. J. Biometeorol. 60:1183-1192. https://doi.org/10.1007/s00484-015-1112-9
Hy-Line Brown International. 2016. Understanding Heat Stress in Layers. Hy-Line International.
Hy-Line Brown International. 2018. Management Guide. Hy-Line International.
Kaur, H. & B. Halliwell. 1994. Evidence for nitric oxide‐mediated oxidative damage in chronic inflammation Nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett. 350:9-12. https://doi.org/10.1016/0014-5793(94)00722-5
Khajali, F. & R. F. Wideman. 2010. Dietary arginine: metabolic, environmental, immunological and physiological interrelationships. Worlds Poult. Sci. J. 66:751-766. https://doi.org/10.1017/S0043933910000711
Khan, R. U., S. Naz, Z. Nikousefat, M. Selvaggi, V. Laudadio, & V. Tufarelli. 2012. Effect of ascorbic acid in heat-stressed poultry. Worlds Poult. Sci. J. 68:477-490. https://doi.org/10.1017/S0043933910000711
Kean, R. P. & S. J. Lamont. 1994. Effect of injection site cutaneous basophil hypersensitivity response to phytohemagglutinin. Poult. Sci. 73:1763-1765. https://doi.org/10.3382/ps.0731763
Kim, D. Y., J. H. Kim, W. J. Choi, G. P. Han, & D. Y. Kil. 2021. Comparative effects of dietary functional nutrients on growth performance, meat quality, immune responses, and stress biomarkers in broiler chickens raised under heat stress conditions. Anim. Biosci. 34:1839. https://doi.org/10.5713/ab.21.0230
Kim, J. H., F. M. Pitargue, H. Jung, G. P. Han, H. S. Choi, & D. Y. Kil. 2017. Effect of superdosing phytase on productive performance and egg quality in laying hens. Asian-Australas. J. Anim. Sci. 30:994. https://doi.org/10.5713/ajas.17.0149
Koelkebeck, K. W. & T. W. Odom. 1994. Laying hen responses to acute heat stress and carbon dioxide supplementation: I. Blood gas changes and plasma lactate accumulation. Comp. Biochem. Physiol. A Physiol. 107:603-606. https://doi.org/10.1016/0300-9629(94)90358-1
Koopmans, S. J., F. J. Van der Staay, N. Le Floc’H, R. Dekker, J. T. M. van Diepen, & A. J. M. Jansman. 2012. Effects of surplus dietary L-tryptophan on stress, immunology, behavior, and nitrogen retention in endotoxemic pigs. Anim. Sci. J. 90:241-251. https://doi.org/10.2527/jas.2010-3372
Koven, W., A. Peduel, M. Gada, O. Nixon, & M. Ucko. 2016. Taurine improves the performance of white grouper juveniles (Epinephelus Aeneus) fed a reduced fish meal diet. Aquaculture 460:8-14. https://doi.org/10.1016/j.aquaculture.2016.04.004
Lara, L. J. & M. H. Rostagno. 2013. Impact of heat stress on poultry production. Animals 3:356-369. https://doi.org/10.3390/ani3020356
Laycock, S. R. & R. O. Ball. 1990. Alleviation of hysteria in laying hens with dietary tryptophan. Can. J. Vet. Res. 54:291.
LeDoux, S. P., W. J. Driggers, B. S. Hollensworth, & G. L. Wilson. 1999. Repair of alkylation and oxidative damage in mitochondrial DNA. Mutat. Res. DNA Repair (Amst). 434:149-159. https://doi.org/10.1016/S0921-8777(99)00026-9
Lee, D. N., Y. H. Cheng, Y. S. Chuang, J. L. Shive, Y. M. Lian, H. W. Wei, & C. F. Weng. 2004. Effects of dietary taurine supplementation on growth performance, serum constituents and antibody production of broilers. Asian-Australas. J. Anim. Sci. 17:109-115. https://doi.org/10.5713/ajas.2004.109
Lentfer, T. L., H. Pendl, S. G. Gebhardt-Henrich, E. K. F. Frohlich, & E. Von Borell. 2015. H/L ratio as a measurement of stress in laying hens – methodology and reliability. Br. Poult. Sci. 56:157-163. https://doi.org/10.1080/00071668.2015.1008993
Li, N., J. E. Ghia, H. Wang, J. McClemens, F. Cote, Y. Suehiro, J. Mallet, & W. I. Khan. 2011. Serotonin activates dendritic cell function in the context of gut inflammation. Am. J. Clin. Pathol. 178:662-671. https://doi.org/10.1016/j.ajpath.2010.10.028
Lu, Q., J. Wen, & H. Zhang. 2007. Effect of chronic heat exposure on fat deposition and meat quality in two genetic types of chicken. Poult. Sci. 86:1059-1064. https://doi.org/10.1093/ps/86.6.1059
Lu, Z., X. F. He, B. B. Ma, L. Zhang, J. L. Li, Y. Jiang, G. H. Zhou, & F. Gao. 2019a. Increased fat synthesis and limited apolipoprotein B cause lipid accumulation in the liver of broiler chickens exposed to chronic heat stress. Poult. Sci. 98:3695-3704. https://doi.org/10.3382/ps/pez056
Lu, Z., X. F. He, B. B. Ma, L. Zhang, J. L. Li, Y. Jiang, G. H. Zhou, & F. Gao. 2019b. The alleviative effects and related mechanisms of taurine supplementation on growth performance and carcass characteristics in broilers exposed to chronic heat stress. Poult. Sci. 98:878-886. https://doi.org/10.3382/ps/pey433
Mahmoud, K. Z., M. M. Beck, S. E. Scheideler, M. F. Forman, K. P. Anderson, & S. D. Kachman. 1996. Acute high environmental temperature and calcium-estrogen relationships in the hen. Poult. Sci. 75:1555-1562. https://doi.org/10.3382/ps.0751555
Malyshev, I. Y., T. A. Zenina, L. Y. Golubeva, V. A. Saltykova, E. B. Manukhina, V. D. Mikoyan, L. N. Kubrina, & A. F. Vanin. 1999. NO-dependent mechanisms of adaptation to hypoxia. Nitric Oxide. 3:105-113. https://doi.org/10.1006/niox.1999.0213
Martin, C. L., M. Duclos, S. Aguerre, P. Mormede, G. Manier, & F. Chaouloff. 2000. Corticotropic and serotonergic responses to acute stress with/without prior exercise training in different rat strains. Acta Physiol. Scand. 168:421-430. https://doi.org/10.1046/j.1365-201x.2000.00683.x
Mashaly, M. M., G. L. Hendricks 3rd, M. A. Kalama, A. E. Gehad, A. O. Abbas, & P. H. Patterson. 2004. Effect of heat stress on production parameters and immune responses of commercial laying hens. Poult. Sci. 83:889-894. https://doi.org/10.1093/ps/83.6.889
Miller-Fleming, L., V. Olin-Sandoval, K. Campbell, & M. Ralser. 2015. Remaining mysteries of molecular biology: The role of polyamines in the cell. J. Mol. Biol. 427:3389-3406. https://doi.org/10.1016/j.jmb.2015.06.020
Moncada, S., E. A. Higgs, H. F. Hodson, R. G. Knowles, P. Lopez-Jaramillo, T. McCall, R. M. J. Palmer, M. W. Radomski, D. D. Rees, & R. Schulz. 1991. The L-arginine: nitric oxide pathway. N. Engl. J. Med. 17:S1-S9. https://doi.org/10.1056/NEJM199312303292706
Navarro-Villa, A., J. H. Mica, J. de los Mozos, L. A. den Hartog, & A. I. García-Ruiz. 2019. Nutritional dietary supplements to reduce the incidence of fatty liver syndrome in laying hens and the use of spectrophotometry to predict liver fat content. J. Appl. Poult. Res. 28:435-446. https://doi.org/10.3382/japr/pfz005
Odom, T. W., P. C. Harrison, & W. G. Bottje. 1986. Effects of thermal-induced respiratory alkalosis on blood ionized calcium levels in the domestic hen. Poult. Sci. 65:570-573. https://doi.org/10.3382/ps.0650570
Reiter, R. J. 1998. Oxidative damage in the central nervous system: protection by melatonin. Prog. Neurobiol. 56:359-384. https://doi.org/10.1016/S0301-0082(98)00052-5
Reyes-Gonzales, M. C., L. Fuentes-Broto, E. Martínez-Ballarín, F. J. Miana-Mena, C. Berzosa, F. A. García-Gil, M. Aranda, & J. J. García. 2009. Effects of tryptophan and 5-hydroxytryptophan on the hepatic cell membrane rigidity due to oxidative stress. J. Membr. Biol. 231:93-99. https://doi.org/10.1007/s00232-009-9208-y
Ripps, H. & W. Shen. 2012. Taurine: a “very essential” amino acid. Mol. Vis. 18:2673.
Rubbo, H., R. Radi, M. Trujillo, R. Telleri, B. Kalyanaraman, S. Barnes, M. Kirk, & B. A. Freeman. 1994. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J. Biochem. Physiol. 269:26066-26075. https://doi.org/10.1016/S0021-9258(18)47160-8
Rubio, C. P., J. Hernández-Ruiz, S. Martinez-Subiela, A. Tvarijonaviciute, & J. J. Ceron. 2016. Spectrophotometric assays for total antioxidant capacity (TAC) in dog serum: An update. BMC Vet. Res. 12:1-7. https://doi.org/10.1186/s12917-016-0792-7
Seiler, N. 1996. Roles of polyamines in cell biology. Principles Medical Biology 4:329-348. https://doi.org/10.1016/S1569-2582(96)80100-0
Shea, M. M., J. A. Mench, & O. P. Thomas. 1990. The effect of dietary tryptophan on aggressive behavior in developing and mature broiler breeder males. Poult. Sci. 69:1664-1669. https://doi.org/10.3382/ps.0691664
Shen, Y. B., G. Voilqué, J. Odle, & S. W. Kim. 2012. Dietary L-tryptophan supplementation with reduced large neutral amino acids enhances feed efficiency and decreases stress hormone secretion in nursery pigs under social-mixing stress. J. Nutr. 142:1540-1546. https://doi.org/10.3945/jn.112.163824
Shim, K. S., K. T. Hwang, M. W. Son, & G. H. Park. 2006. Lipid metabolism and peroxidation in broiler chicks under chronic heat stress. Asian-Australas. J. Anim. Sci. 19:1206-1211. https://doi.org/10.5713/ajas.2006.1206
Shini, S., P. Kaiser, A. Shini, & W. L. Bryden. 2008. Differential alterations in ultrastructural morphology of chicken heterophils and lymphocytes induced by corticosterone and lipopolysaccharide. Vet. Immunol. Immunopathol. 122:83-93. https://doi.org/10.1016/j.vetimm.2007.10.009
Stadtman, E. R. & R. L. Levine. 2000. Protein oxidation. Ann N. Y. Acad. Sci. 899:191-208. https://doi.org/10.1111/j.1749-6632.2000.tb06187.x
Sugiharto, S. 2020. Alleviation of heat stress in broiler chicken using turmeric (Curcuma longa) – a short review. Journal Animal Behaviour Biometeorology 8:215-222. https://doi.org/10.31893/jabb.20028
Surai, P. F., I. I. Kochish, & M. T. Kidd. 2020. Taurine in poultry nutrition. Anim. Feed. Sci. Technol. 260:114339. https://doi.org/10.1016/j.anifeedsci.2019.114339
Surai, P. F., I. I. Kochish, V. I. Fisinin, & M. T. Kidd. 2019. Antioxidant defence systems and oxidative stress in poultry biology: An update. Antioxidants 8:235. https://doi.org/10.3390/antiox8070235
Wasti, S., N. Sah, & B. Mishra. 2020. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals 10:1266. https://doi.org/10.3390/ani10081266
Whitehead, C. C. & T. Keller. 2007. An update on ascorbic acid in poultry. 2007. World’s Poult. Sci. J. 59:161-184. https://doi.org/10.1079/WPS20030010
Wideman, R. F., D. D. Rhoads, G. F. Erf, & N. B. Anthony. 2013. Pulmonary arterial hypertension (ascites syndrome) in broilers: A review. Poult. Sci. 92:64-83. https://doi.org/10.3382/ps.2012-02745
Woodger, T. L., A. N. N. A. Sirek, & G. H. Anderson. 1979. Diabetes, dietary tryptophan, and protein intake regulation in weanling rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 236:R307-R311. https://doi.org/10.1152/ajpregu.1979.236.5.R307
Wu, G. 2009. Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1-17. https://doi.org/10.1007/s00726-009-0269-0
Wu, X., Z. Ruan, Y. Gao, Y. Yin, X. Zhou, L. Wang, M. Geng, Y. Hou, & G. Wu. 2010. Dietary supplementation with L-arginine or N-carbamylglutamate enhances intestinal growth and heat shock protein-70 expression in weanling pigs fed a corn-and soybean meal-based diet. Amino Acids 39:831-839. https://doi.org/10.1007/s00726-010-0538-y
Xing, S., X. Wang, H. Diao, M. Zhang, Y. Zhou, & J. Feng. 2019. Changes in the cecal microbiota of laying hens during heat stress in mainly associated with reduced feed intake. Poult. Sci. 98:5257-5264. https://doi.org/10.3382/ps/pez440
Yang, J., X. Zong, G. Wu, S. Lin, Y. Feng, & J. Hu. 2015. Taurine increases testicular function in aged rats by inhibiting oxidative stress and apoptosis. Amino Acids 47:1549-1558. https://doi.org/10.1007/s00726-015-1995-0
Young, I. S. 2001. Measurement of total antioxidant capacity. J. Clin. Pathol. 54. https://doi.org/10.1136/jcp.54.5.339
Yu, D. G., N. Namgung, J. H. Kim, S. Y. Won, W. J. Choi, & D. Y. Kil. 2021. Effects of stocking density and dietary vitamin C on performance, meat quality, intestinal permeability, and stress indicators in broiler chickens. J. Anim. Sci. Technol. 63:815. https://doi.org/10.5187/jast.2021.e77
Yue, Y., Y. Guo, & Y. Yang. 2017. Effects of dietary L-tryptophan supplementation on intestinal response to chronic unpredictable stress in broilers. Amino Acids. 49:1227-1236. https://doi.org/10.1007/s00726-017-2424-3
Yun, W., M. H. Song, J. H. Lee, H. J. Oh, J. S. An, G. M. Kim, S. D. Lee, S. H. Lee, H. B. Kim, & J. H. Cho. 2020. Arginine addition in a diet for weaning pigs can improve the growth performance under heat stress. J. Anim. Sci. Technol. 62:460. https://doi.org/10.5187/jast.2020.62.4.460
Zhang, H. J., Y. M. Guo, Y. D. Tian, & J. M. Yuan. 2008a. Dietary conjugated linoleic acid improves antioxidant capacity in broiler chicks. Br. Poult. Sci. 49:213-221. https://doi.org/10.1080/00071660801989836
Zhang, J., D. Chen, & B. Yu. 2008b. Effect of different dietary energy sources on induction of fatty liver-hemorrhagic syndrome in laying hens. Int. J. Poult. Sci. 7:1232-1236. https://doi.org/10.3923/ijps.2008.1232.1236
Zhang, Z., L. Zhao, Y. Zhou, X. Lu, Z. Wang, J. Wang, & W. Li. 2017. Taurine ameliorated homocysteine-induced H9C2 cardiomyocyte apoptosis by modulating endoplasmic reticulum stress. Apoptosis 22:647. https://doi.org/10.1007/s10495-017-1351-9
Zhou, W. T., M. Fujita, S. Yamamoto, K. Iwasaki, R. Ikawa, H. Oyama, & H. Horikawa. 1998. Effects of glucose in drinking water on the changes in whole blood viscosity and plasma osmolality of broiler chickens during high temperature exposure. Poult. Sci. 77:644-647. https://doi.org/10.1093/ps/77.5.644
Zhu, W., W. Jiang, & L. Y. Wu. 2014. Dietary L‐arginine supplement alleviates hepatic heat stress and improves feed conversion ratio of Pekin ducks exposed to high environmental temperature. J. Anim. Physiol. Anim. Nutr. 98:1124-1131. https://doi.org/10.1111/jpn.12195
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.