Development of Cheese as an Antioxidant Functional Food with the Addition of Orthodox Black Tea
Abstract
COVID-19 and the increase in degenerative diseases are the reasons for the high consumption of functional foods. This study investigated the physicochemical, sensory, and functional characteristics of cheese enhanced with orthodox black tea. The primary research materials were 40 liters of fresh cow’s milk, orthodox black tea (OBT), mesophilic bacteria (Lactococcus lactis), animal calf rennet, and CaCl₂. An experimental completely randomized design (CRD) was employed in the study to four treatments, namely control (T0), and the addition of 0.5% OBT (T1), 1% OBT (T2), 1.5% OBT (T3), and 2% OBT (T4). Each treatment was repeated four times and performed in duplicate. The observed variables were physical properties (colors and textures), chemical properties (moisture content, total solids, pH, and total titratable acidity), antioxidant activity, and sensory properties of cheese. The results showed that adding OBT up to 2% produced significantly different levels of pH, total titratable acidity, values (L*, a*, b*), hardness, antioxidant activity, and sensory properties of cheese. No significant difference was observed in the moisture content, total solids, and stickiness of cheese. Conclusively, incorporating OBT up to 2% in cheese making tends to increase the functional properties of cheese that include the a* value, total titratable acidity, and antioxidant activity, but it also decreases the L* and b* values, hardness, and pH value. The panelist’s preference was the highest for cow’s milk cheese with the addition of 0.5% OBT.
References
Al-Hamdani, H. M. S., S. H. Ahmed, & SalwaKhudadat. 2021. Developing soft cheese industry supported with medicinal herbs as functional food. Iraqi J. Mark. Res. Consum. Prot. 13:1–13. https://doi.org/10.28936/jmracpc13.1.2021.(1)
AOAC International. 1990. Official Methods of Analysis. 15th ed. AOAC International, USA.
Astuti, F. D., T. Setyawardani, & S. S. Santosa. 2021. The physical characteristics of cheese made of milk, colostrum and both during the ripening. J. Indones. Trop. Anim. Agric. 46:75–83. https://doi.org/10.14710/jitaa.46.1.75-83
BSN. 2016. SNI 1902:2016 Syarat Mutu Teh Hitam. Badan Standardisasi Nasional, Jakarta.
BSN. 2018. SNI 2980:2018 Keju Olahan. Badan Standardisasi Nasional, Jakarta.
Beltrán-Barrientos, L. M., A. Hernández-Mendoza, M. J. Torres-Llane, A. F. González-Córdova, & B. Vallejo-Córdoba. 2016. Invited review : fermented milk as antihypertensive functional food. J. Dairy Sci. 99:4099–4110. https://doi.org/10.3168/jds.2015-10054
Casado-coterillo, C., P. Díaz-guridi, J. A. Otero, & R. Ibáñez. 2023. Modeling of lactic acid rejection from lactose in acidified cheese whey by nanofiltration. J. Dairy Sci. 106:1–12. https://doi.org/10.3168/jds.2022-22502
Chaikham, P. 2015. Stability of probiotics encapsulated with Thai herbal extracts in fruit juices and yoghurt during refrigerated storage. Food Biosci. 12:61–66. https://doi.org/10.1016/j.fbio.2015.07.006
Elgailani, I. E. H. 2015. Spectrophotometric and phytochemical analysis of black tea (Camellia sinensis Leaves). J. Appl. Ind. Sci. 3:167–171.
Fadhlurrohman, I., T. Setyawardani, & J. Sumarmono. 2023. Karakteristik warna (hue, chroma, whiteness index), rendemen, dan persentase whey keju dengan penambahan teh hitam orthodox (Camellia sinensis var. assamica). JITIPARI (Jurnal Ilmiah Teknologi Industri Pangan UNISRI). 8:10–19. https://doi.org/10.33061/jitipari.v8i1.8133
Fernando, C. D. & P. Soysa. 2015. Extraction kinetics of phytochemicals and antioxidant activity during black tea (Camellia sinensis L.) brewing. Nutr. J. 14:1–7. https://doi.org/10.1186/s12937-015-0060-x
Giroux, H. J., G. De Grandpré, P. Fustier, C. P. Champagne, D. St-gelais, M. Lacroix, & M. Britten. 2013. Production and characterization of cheddar-type cheese enriched with green tea extract. Dairy Sci. Technol. 93:241–254. https://doi.org/10.1007/s13594-013-0119-4
Hamad, M. N. F. 2015. Comparative study between traditional domiati cheese and recombined feta cheese. Indian J. Dairy Sci. 68:442–452.
Jansson, T., S. S. Waehrens, V. Rauh, B. P. Danielsen, J. Sørensen, W. L. P. Bredie, M. A. Petersen, C. A. Ray, & M. N. Lund. 2019. Effect of green tea catechins on physical stability and sensory quality of lactose-reduced UHT milk during storage for one year. Int. Dairy J. 95:25–34. https://doi.org/10.1016/j.idairyj.2019.03.007
Lamothe, S., A. Langlois, L. Bazinet, C. Couillard, & M. Britten. 2016. Antioxidant activity and nutrient release from polyphenol-enriched cheese in a simulated gastrointestinal environment. Food Funct. 7:1634–1644. https://doi.org/10.1039/C5FO01287B
Liu, D. 2018. Effect of fuzhuan brick-tea addition on the quality and antioxidant activity of skimmed set-type yoghurt. Int. J. Dairy Technol. 71:22–23. https://doi.org/10.1111/1471-0307.12395
Los, P. R., D. R. S. Simoes, L. Benvenutti, A. A. F. Zielinski, A. Alberti, & A. Nogueira. 2021. Combining chemical analysis, sensory profile, CATA, preference mapping and chemometrics to establish the consumer quality standard of camembert-type cheeses. Int. J. Dairy Technol. 74:371–382. https://doi.org/10.1111/1471-0307.12753
Mamo, A. 2017. Cheddar cheese characterization and its biochemical change during ripening. Int. J. Adv. Sci. Res. Manag. 2:53–59.
Mangione, G., M. Caccamo, A. Natalello, & G. Licitra. 2023. Graduate student literature review: history, technologies of production, and characteristics of ricotta cheese. J. Dairy Sci. 106:3807–3826. https://doi.org/10.3168/jds.2022-22460
Mezo-Solís, J. A., V. M. Moo-Huchin, A. Sánchez-Zarate, M. Gonzalez-Ronquillo, R. J. Estrada-León, R. Ibáñez, P. Toro-Mujica, A. J. Chay-Canul, & E. Vargas-Bello-Pérez. 2020. Physico-chemical, sensory and texture properties of an aged Mexican manchego-style cheese produced from hair sheep milk. Foods. 9:1666. https://doi.org/10.3390/foods9111666
Mortazavian, A. M., R. S. Rocha, & A. G. Cruz. 2018. Effects of herbal extracts on quality traits of yogurts, cheeses, fermented milks, and ice creams: a technological perspective. Curr. Opin. Food Sci. 19:1–7. https://doi.org/10.1016/j.cofs.2017.11.013
Muniandy, P., A. B. Shori, & A. S. Baba. 2016. Influence of green, white and black tea addition on the antioxidant activity of probiotic yogurt during refrigerated storage. Food Packag. Shelf Life. 8:1–8. https://doi.org/10.1016/j.fpsl.2016.02.002
Néstor, G. M., N. Troncoso-Reyes, & M. Y. Leal-Ramos. 2013. Texture profile analysis of fresh cheese and chihuahua cheese using miniature cheese models. Tecnociencia Chihuahua 7:65–74.
Nzekoue, F. K., A. Alesi, S. Vittori, G. Sagratini, & G. Caprioli. 2021. Development of functional whey cheese enriched in vitamin D3: nutritional composition, fortification, analysis, and stability study during cheese processing and storage. Int. J. Food Sci. Nutr. 72:746–756. https://doi.org/10.1080/09637486.2020.1857711
Patil, M. P., K. T. Patil, D. Ngabire, Y. B. Seo, & G. D. Kim. 2016. Phytochemical, antioxidant and antibacterial activity of black tea (Camellia sinensis). Int. J. Pharmacogn. Phytochem. Res. 8:341–346.
Perera, G. A. A. R., A. M. T. Amarakoon, D. C. K. Illeperuma, & P. K. P. Muthukumarana. 2015. Effects of raw material on the chemical composition, organoleptic properties, antioxidant activity, physical properties and the yield of instant black tea. LWT - Food Sci. Technol. 63:745–750. https://doi.org/10.1016/j.lwt.2015.03.060
Qi, C., G. Liu, Y. Ping, K. Yang, Q. Tan, Y. Zhang, G. Chen, X. Huang, & D. Xu. 2023. A comprehensive review of nano-delivery system for tea polyphenols: Construction, applications, and challenges. Food Chem. X. 17:100571. https://doi.org/10.1016/j.fochx.2023.100571
Qie, X., Y. Wu, Y. Chen, C. Liu, M. Zeng, F. Qin, Z. Wang, J. Chen, & Z. He. 2021. Competitive Interactions among tea catechins, proteins, and digestive enzymes modulate in vitro protein digestibility, catechin bioaccessibility, and antioxidant activity of milk tea beverage model systems. Food Res. Int. 140:110050. https://doi.org/10.1016/j.foodres.2020.110050
Rashidinejad, A., E. J. Birch, D. Sun-waterhouse, & D. W. Everett. 2014. Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chem. 156:176–183. https://doi.org/10.1016/j.foodchem.2014.01.115
Rashidinejad, A., E. J. Birch, & D. W. Everett. 2016a. Antioxidant activity and recovery of green tea catechins in full-fat cheese following gastrointestinal simulated digestion. J. Food Compos. Anal. 48:13–24. https://doi.org/10.1016/j.jfca.2016.02.004
Rashidinejad, A., E. J. Birch, & D. W. Everett. 2016b. A novel functional full-fat hard cheese containing liposomal nanoencapsulated green tea catechins: manufacture and recovery following simulated digestiondigestio. Food Funct. 7:3283–3294. https://doi.org/10.1039/C6FO00354K
Rashidinejad, A., E. J. Birch, J. Hindmarsh, & D. W. Everett. 2017. Molecular interactions between green tea catechins and cheese fat studied by solid-state nuclear magnetic resonance spectroscopy. Food Chem. 215:228–234. https://doi.org/10.1016/j.foodchem.2016.07.179
Reale, E., Y. Lu, M. E. Johnson, J. J. Jaeggi, M. Molitor, & J. A. Lucey. 2022. Slower proteolysis in cheddar cheese made from high-protein cheese milk is due to an elevated whey protein content. J. Dairy Sci. 105:9367–9386. https://doi.org/10.3168/jds.2022-22012
Robalo, J., M. Lopes, O. Cardoso, A. S. Silva, & F. Ramos. 2022. Efficacy of whey protein film incorporated with portuguese green tea (Camellia sinensis L.) extract for the preservation of latin-style fresh cheese. Foods 11:1158. https://doi.org/10.3390/foods11081158
Rohdiana, D. 2015. Teh: proses, karakteristik dan komponen fungsionalnya. Food Rev. Indones. 10:34–37.
Samadi, S. & F. R. Fard. 2020. Phytochemical properties, antioxidant activity and mineral content (Fe, Zn and Cu) in Iranian produced black tea, green tea, and roselle calyces. Biocatal. Agric. Biotechnol. 23:101472. https://doi.org/10.1016/j.bcab.2019.101472
Sanguigni, V., M. Manco, R. Sorge, L. Gnessi, & F. Davide. 2017. Natural antioxidant ice cream acutely reduces oxidative stress and improves vascular function and physical performance in healthy individuals. Nutrition 33:225–233. https://doi.org/10.1016/j.nut.2016.07.008
Sant’Ana, A. M. S., F. F. Bezerril, M. S. Madruga, A. S. M. Batista, M. Magnani, & E. L. Souza. 2013. Nutritional and sensory characteristics of minas fresh cheese made with goat milk, cow milk, or a mixture of both. J. Dairy Sci. 96:7442–7453. https://doi.org/10.3168/jds.2013-6915
Setyawardani, T., W. P. Rahayu, & N. S. Palupi. 2016. Physicochemical and stability of goat cheese with mono and mixed culture of Lactobacillus plantarum and Lactobacillus rhamnosus. Anim. Prod. 18:36–42. https://doi.org/10.20884/1.jap.2016.18.1.533
Setyawardani, T., A. H. D. Rahardjo, & M. Sulistyowati. 2017a. Chemical characteristics of goat cheese with different percentages of mixed indigenous probiotic culture during ripening. Med. Pet. 40:55–62. https://doi.org/10.5398/medpet.2017.40.1.55
Setyawardani, T., M. Sulistyowati, K. Widayaka, & A. H. D. Rahardjo. 2017b. The physicochemical and sensory qualities of goat cheese with indigenous probiotic starter at different temperatures and storage durations. Anim. Prod. 19:197–205. https://doi.org/10.20884/1.jap.2017.19.3.611
Setyawardani, T., K. Widayaka, J. Sumarmono, A. H. D. Rahardjo, S. S. Santosa, & M. Sulistyowati. 2018. Texture, hedonic test and fatty acid profile of goat cheese with L. plantarum TW14 and L. rhamnosus TW2 isolates stored at different temperature conditions. J. Indones. Trop. Anim. Agric. 43:230–237. https://doi.org/10.14710/jitaa.43.3.230-237
Setyawardani, T., J. Sumarmono, & K. Widayaka. 2019. Effect of cold and frozen temperatures on artisanal goat cheese containing probiotic lactic acid bacteria isolates (Lactobacillus plantarum TW14 and Lactobacillus rhamnosus TW2). Vet. World. 12:409–417. https://doi.org/10.14202/vetworld.2019.409-417
Sharma, P., A. Segat, A. L. Kelly, & J. J. Sheehan. 2020. Colorants in cheese manufacture: Production, chemistry, interactions, and regulation. Compr. Rev. Food Sci. Food Saf. 19:1–23. https://doi.org/10.1111/1541-4337.12519
Sumarmono, J., T. Setyawardani, & S. A. Santosa. 2019. Effect of storage conditions on the characteristics and composition of fresh goat cheese containing probiotics. Anim. Prod. 21:56–63. https://doi.org/10.20884/1.jap.2019.21.1.776
Tomazou, M., A. Oulas, A. K. Anagnostopoulos, G. T. Tsangaris, & G. M. Spyrou. 2019. In silico identification of antimicrobial peptides in the proteomes of goat and sheep milk and feta cheese. Proteomes. 7:32. https://doi.org/10.3390/proteomes7040032
Vacca, G. M., G. Stocco, M. L. Dettori, G. Bittante, & M. Pazzola. 2020. Goat cheese yield and recovery of fat, protein, and total solids in curd are affected by milk coagulation properties. J. Dairy Sci. 103:1352–1365. https://doi.org/10.3168/jds.2019-16424
Vacca, G. M., G. Stocco, M. L. Dettori, A. Summer, C. Cipolat-Gotet, G. Bittante, & M. Pazzola. 2018. Cheese yield, cheesemaking efficiency, and daily production of 6 breeds of goats. J. Dairy Sci. 101:7817–7832. https://doi.org/10.3168/jds.2018-14450
Wang, W., R. Jia, & B. Wang. 2023. Utilization of two plant polysaccharides to improve fresh goat milk cheese: texture, rheological properties, and microstructure characterization. J. Dairy Sci. 106:3900–3917. https://doi.org/10.3168/jds.2022-22195
Wong, M., S. Sirisena, & K. Ng. 2022. Phytochemical profile of differently processed tea: a review. J. Food Sci. 87:1925–1942. https://doi.org/10.1111/1750-3841.16137
Yang, C., C. Cui, Y. Zhu, X. Xia, G. Jin, C. Liu, Y. Li, X. Xue, & R. Hou. 2022. Effect of brewing conditions on the chemical and sensory profiles of milk tea. Food Chem. X. 16:100453. https://doi.org/10.1016/j.fochx.2022.100453
Yılmaz, C., F. Özdemir, & V. Gökmen. 2020. Investigation of free amino acids, bioactive and neuroactive compounds in different types of tea and effect of black tea processing. LWT - Food Sci. Technol. 117:108655. https://doi.org/10.1016/j.lwt.2019.108655
Zheng, Y., Z. Liu, & B. Mo. 2016. Texture profile analysis of sliced cheese in relation to chemical composition and storage temperature. J. Chem. 2016:1–10. https://doi.org/10.1155/2016/8690380
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.