Frozen Semen Characteristics of Limousin Bull at Different Ages
Abstract
Strategies to increase the population and productivity of beef cattle can be implemented through reproductive management, such as artificial insemination (AI) using frozen semen. This study aims to evaluate the characteristics of frozen semen of Limousin bulls of different ages, which can still be used for insemination programs up to 12 years of age. This study used frozen semen of Limousin bulls ages 3, 8, and 12 years produced in 2021 at the Artificial Insemination Center in Singosari, East Java Province, Indonesia. Five bulls from each different age group were used for replication. Computer-assisted sperm analysis was used to determine sperm motility, viability, and abnormalities using eosin–nigrosine staining. Plasma membrane integrity was analyzed using the hypoosmotic swelling test. The acrosomes’ integrity was evaluated using FITC-PNA-PI, protamine deficiency using chromomycin A3, and DNA fragmentation testing using the acridine orange fluorescent technique. The results showed that the parameters of sperm motility, viability, abnormality, plasma membrane integrity, and protamine deficiency showed no significant differences in all age groups. The kinematic parameters (straightness and beat cross frequency) of the 3-year-old group were significantly higher (p<0.05) compared with those of the other groups. Parameters of acrosome integrity showed a higher prevalence in the 3-year-old group compared with those of the other groups. Furthermore, the DNA fragmentation of the 12-year-old group was significantly higher (p<0.05) compared with that of the other groups. The research concludes that increasing the age of Limousin bulls can reduce acrosome integrity and DNA fragmentation.
References
Amaral, S., A. Amaral, & J. Ramalho-Santos. 2013. Aging and male reproductive function: a mitochondrial perspective. Front. Biosci. (Shol. Ed.). 5:181-97. https://doi.org/10.2741/S365
Baharun, A., R. I. Arifiantini, & T. L. Yusuf. 2017. Freezing capability of pasundan bull sperm using Tris-egg yolk, Tris-soy, and Andromed® diluents. Indo. J. Vet. Sci. 11:45-49. https://doi.org/10.21157/j.ked.hewan.v11i1.5810
Baharun, A., S. Said, R. I. Arifiantini, & N. W. K. Karja. 2021. Correlation between age, testosterone and adiponectin concentration, and sperm abnormalities in Simmental bulls. Vet. World. 14:2124-2130. https://doi.org/10.14202/vetworld.2021.2124-2130
Beggs, D., B. John, C. Peter, E. Keith, F. Geoffry, J. Helen, J. Peter, M. Michael, N. Geoffrey, N. Scott, & P. Viv. 2013. Veterinary Bull Breeding Soundness Evaluation. Australian Veterinary Association, Brisbane, QLD, Australia.
Belloc, S., A. Hazouta, A. Zini, P. Merviel, R. Cabry, H. Chahine, H. Copin, & M. Benkhalifa. 2014. How to overcome male infertility after 40: Influence of paternal age on fertility. Maturitas 78:22-9. https://doi.org/10.1016/j.maturitas.2014.02.011
BSN. 2021. SNI Semen Beku-Bagian 1: Sapi. SNI Nomor 4869-1. Badan Standardisasi Nasional, Jakarta.
Budiyanto, A., M. Arif, M. P. W. Alfons, R. T. Fani, A. F. Hafid, B. Wicaksono, K. M. Insani, & M. Herdinta. 2021. The effect of age and breed on the quality of bull semen in the regional artificial insemination centre. Acta. Vet. Indo. (Special Issues): 132-136.
Carreira, J. T., J. T. Trevizan, I. R. Carvalho, B. Kipper, L. H. Rodrigues, C. Silva, S. H. V. Perri, J. R. Drevet, & M. B. Koivisto. 2017. Does sperm quality and DNA integrity differ in cryopreserved semen samples from young, adult, and aged Nellore bulls?. Basic. Clin. Androl. 27:12. https://doi.org/10.1186/s12610-017-0056-9
Dehghanpour, F., N. Tabibnejad, F. Fesahat, F. Yazdinejad, & A. R. Talebi. 2017. Evaluation of sperm protamine deficiency and apoptosis in infertile men with idiopathic teratozoospermia. Cli. Exp. Reprod. Med. 44:73-78. https://doi.org/10.5653/cerm.2017.44.2.73
Demirhan, A., K. Tekin, A. Daskin, & O. Uysal. 2020. Assessment of morphological features of bull semen thawed at various temperatures and periods of time with CASA. Kocatepe. Vet. J. 13:286-293. https://doi.org/10.30607/kvj.722620
Evenson, D. P. 2016. The sperm chromatin structure assay (SCSA®) and other sperm DNA fragmentation tests fpr evaluation of sperm nuclear DNA integrity as related to fertility. Anim. Reprod. Sci. 169:56-75. https://doi.org/10.1016/j.anireprosci.2016.01.017
Felton-Taylor, J., K. A. Prosser, J. H. Hernandez-Medrano, S. Gentili, K. J. Copping, P. E. Macrossan, & V. E. A. Perry. 2020. Effect of breed, age, season and region on sperm morphology in 11.387 bulls submitted to breeding soundness evaluation in Australia. Theriogenology 142:1-7. https://doi.org/10.1016/j.theriogenology.2019.09.001
Fortes, M. R. S., R. G. Holroyd, A. Reverter, B. K. Venus, N. Satake, & G. B. Boe-Hansen. 2012. The integrity of sperm chromatin in young tropical composite bulls. Theriogenology 78:326-333. https://doi.org/10.1016/j.theriogenology.2012.02.007
Francis, S., S. Yelumalai, C. Jones, & K. Coward. 2014. Aberrant protamine content in sperm and consequential implications for infertility treatment. Hum. Fertil. 17:80-89. https://doi.org/10.3109/14647273.2014.915347
Gallo, A., M. C. Esposito, E. Tosti, & R. Boni. 2021. Sperm motility, oxidative status, and mitochondrial activity: Exploring correlation in different species. Antioxidants (Basel) 10:1131. https://doi.org/10.3390/antiox10071131
Hidalgo, M. M. T., A. B. M. de Almeida, F. L. Z. de Moraes, R. Y. P. Marubayashi, F. F. de Souza, T. R. R. Barreiros, & M. I. M. Martins. 2021. Sperm subpopulations influence the pregnancy rates in cattle. Reprod. Domest. Anim. 56:1117-1127. https://doi.org/10.1111/rda.13955
Horst, G. V. D., L. Maree, & S. S. du Plessis. 2018. Current perspective of CASA aplications in diverse mammalian spermatozoa. Reprod. Fertil. Dev. 30:875-888. https://doi.org/10.1071/RD17468
Indriani, I., T. Susilawati, & S. Wahyuningsih. 2013. Spermatozoa viability of Limousin cattle preserved with water jacket and free water jacket method. Jur. Vet. 14:379-386.
Iranpour, F. G. 2013. The effects of protamine deficiency on ultrastructure of human sperm nucleus. Adv. Biomed. Res. 9:3-24. https://doi.org/10.4103/2277-9175.124666
Iskandar, H., G. Andersson, H. Sonjaya, R. I. Arifiantini, S. Said, H. Hasbi, T. Maulana, & A. Baharun. 2023. Protein identification of seminal plasma in Bali bull (Bos javanicus). Animals 13:514. https://doi.org/10.3390/ani13030514
Iskandar, H., H. Sonjaya, R. I. Arifiantini, & H. Hasbi. 2022. The quality of fresh and frozen semen and its correlation with molecular weight of seminal plasma protein in Bali cattle. Trop. Anim. Sci. J. 45:405-412. https://doi.org/10.5398/tasj.2022.45.4.405
Iskandar, H., H. Sonjaya, R. I. Arifiantini, & H. Hasbi. 2022. Correlation between semen quality, libido, and testosterone concentration in Bali bulls. J. Ilmu. Ter. Vet. 27:57-64. https://doi.org/10.14334/jitv.v27i2.2981
Ismaya, I. 2014. Biotechnology of Artificial Insemination on Cattle and Buffalo. UGM Press, Yogyakarta.
Jha, P. K., M. G. S. Alam, M. A. A. Mansur, M. R. I. Talukder, N. Naher, A. K. M. A. Rahman, D. C. Hall, & F. Y. Bakri. 2020. Effects of number of frozen-thawed ram sperm and number of inseminations on fertility in synchronized ewes under field condition. J. Anim. Reprod. Biotech. 35:190-197. https://doi.org/10.12750/JARB.35.2.190
Jiang, H., W-J. Zhu, J. Li, Q-J. Chen, W-B. Liang, & Y-Q. Gu. 2013. Quantitative histological analysis and ultrastructure of the aging human testis. Int. Urol. Nephrol. 46:879-85. https://doi.org/10.1007/s11255-013-0610-0
Kaeoket, K., P. Chanapiwat, P. Tummaruk, M. Techakumphu, & A. Kunavongkrit. 2011. A preliminary study on using autologous and heterologous boar sperm supernatant from freezing process as post-thawing solution: Its effect on sperm motility. Trop. Anim. Health. Prod. 43:1049-1055. https://doi.org/10.1007/s11250-011-9804-6
Kumar, D., P. Kumar, P. Singh, S. P. Yadav, & P. S. Yadav. 2016. Assessment of sperm damages during different stages of cryopreservation in water buffalo by fluorescent probes. Cytotechnology 68:451-458. https://doi.org/10.1007/s10616-014-9798-9
Kumaresan, A., M. D. Gupta, T. K. Datta, & J. M. Morrell. 2020. Sperm DNA integrity and male fertility in farm animals: A review. Front Vet. Sci. 7:321. https://doi.org/10.3389/fvets.2020.00321
Loux, S. C., B. Macias-Garcia, L. Gonzalez-Fernandez, H. D. Canesin, D. D. Varner, & K. Hinrichs. 2014. Regulation of axonemal motility in demembranated equine sperm. Biol. Reprod. 91:1–16. https://doi.org/10.1095/biolreprod.114.122804
Magdanz, V., S. Boryshpolets, C. Ridzewski, B. Eckel, & K. Reinhardt. 2019. The motility-based swim-up technique separates bull sperm based on differences in metabolic rates and tail length. PLoS ONE 14:e0223576. https://doi.org/10.1371/journal.pone.0223576
Mariadassou, M., Y. Ramayo-Caldas, M. Charles, M. Femenia, G. Renand, & D. Rocha. 2020. Detection of selection signatures in Limousin cattle using whole genome resequencing. Anim. Gen. 51:5. https://doi.org/10.1111/age.12982
Massanyi, P., P. Chrenek, N. Lukac, A. V. Makarevich, A. Ostro, J. Zivcak, & J. Bulla. 2008. Comparison of different evaluation chambers for analysis of rabbit spermatozoa motility parameters using CASA system. Slovak. J. Anim. Sci. 41:60-66.
Melita, D. & M. Adam. 2014. The effect of bull age and ejaculation frequency on quality of Aceh bull spermatozoa. J. Med. Vet. 8:15-19. https://doi.org/10.21157/j.med.vet..v8i1.3323
Oberoi, S. L. B., S. V. A. S. Kumar, & C. P. Talwar. 2014. Study of human sperm motility post cryopreservation. Med. J. Armed Forces India 70:349-53. https://doi.org/10.1016/j.mjafi.2014.09.006
Oldenhof, H., M. Gojowsky, S. Wang, S. Henke, C. Yu, K. Rohn, W. F. Wolkers, & H. Sieme. 2013. Osmotic stress and membrane phase changes during freezing of stallion sperm: Mode of action of cryoprotective agents. Biol. Reprod. 88:1-11. https://doi.org/10.1095/biolreprod.112.104661
Rahman, M. S., W-S. Kwon, & M-G. Pang. 2017. Prediction of male fertility using capacitation-associated proteins in spermatozoa. Mol. Reprod. Dev. 84: 749-759. https://doi.org/10.1002/mrd.22810
Rahman, M. B., K. Schellander, N. L. Luceno, & A. V. Soom. 2018. Heat stress responses in spermatozoa: Mechanisms and consequences for cattle fertility. Theriogenology 113:102-112. https://doi.org/10.1016/j.theriogenology.2018.02.012
Rahman, M. M., N. Naher, M. M. Isam, M. Hasan, F. Naznin, M. M. U. Bhuiyan, F. Y. Bari, & N. S. Juyena. 2020. Natural vs synchronized estrus: determinants of successful pregnancy in ewes using frozen-thawed Suffolk semen. J. Anim. Reprod. Biotech. 35:183-189. https://doi.org/10.12750/JARB.35.2.183
Rajabi-Toustani, R., Q. S. Akter, E. A. Almadaly, Y. Hoshino, H. Adachi, K. Mukoujima, & T. Murase. 2019. Methodogical improvement of fluorescein isothiocyanate peanut agglutinin (FITC-PNA) acrosomal integrity staining for frozen-thawed Japanese Balack bull spermatozoa. J. Vet. Med. Scie. 81:649-702. https://doi.org/10.1292/jvms.18-0560
Reveco, A. R., J. L. Hernandez, & P. Aros. 2016. Long-term storing frozen semen at -196 oC does not affect the post-thaw sperm quality of bull semen in cryopreservation in eukaryotes. IntechOpen. P91101.
Ribas-Maynou, J. & J. Benet. 2019. Single and double strand sperm DNA damage: different reproductive effects on male fertility. Genes. 10:105. https://doi.org/10.3390/genes10020105
Ryu, D-Y., W-H. Song, W-K. Pang, S. J. Yoon, M. S. Rahman, & M-G. Pang. 2019. Freezability biomarkers in bull epididymal spermatozoa. Sci. Rep. 9:12797. https://doi.org/10.1038/s41598-019-49378-5
Said, S., F. Afiati, & T. Maulana. 2015. Study on changes of sperm head morphometry and DNA integrity of freeze-dried bovine spermatozoa. J. Indo. Trop. Anim. Agric. 40:145-152. https://doi.org/10.14710/jitaa.40.3.145-152
Satrio, F. A., N. W. K. Karja, M. A. Setiadi, E. M. Kaiin, M. Gunawan, & B. Purwantara. 2022. Pos-thaw characteristics of the Simmental sperm function in different ages of bulls. Trop. Anim. Sci. J. 45:381-388. https://doi.org/10.5398/tasj.2022.45.4.381
Solihati, N., R. Idi, S. D. Rasad, M. Rizal, & M. Fitriati. 2008. Quality of cauda epididymal spermatozoa of Ongole Cross Bred Bull in yol skim milk, tris, and citrate extenders stored at 4-5 oC. Anim. Prod. 10:22-29.
Sun, W., S. Jiang, J. Su, J. Zhang, X. Bao, R. Ding, P. Shi, S. Li, C. Wu, G. Zhao, G. Cao, Q. Sun, H. Yu, & X. Li. 2020. The effects of cryopreservation on the acrosome structure, enzyme activity, motility, and fertility of bovine, ovine, and goat sperm. Anim. Reprod. 17:e20200219. https://doi.org/10.1590/1984-3143-AR2020-0219
Susilawati, T. 2013. Pedoman Inseminasi Buatan Pada Ternak. Universitas Brawijaya (UB) Press, Malang.
Tanga, B. M., A. Y. Qamar, S. Raza, S. Bang, X. Fang, K. Yoon, & J. Cho. 2021. Semen evaluation: methodological advancement in sperm quality-specific fertility assessment- A review. Anim. Biosci. 34:1253-1270. https://doi.org/10.5713/ab.21.0072
Tesi, M., G. Lazzarini, C. Magliaro, F. Abramo, D. Fenelli, V. Miragliotta, & A. Rota. 2020. Age-related changes of seminiferous tubule morphology, interstitial fibrosis and spermatogenesis in dogs. Anim. Reprod. Sci. 219:106534. https://doi.org/10.1016/j.anireprosci.2020.106534
Tourmente, M., P. Villar-Moya, E. Rial, & E. R. S. Roldan. 2015. Differences in ATP generation via glycolysis and oxidative phosphorylation and relationship with sperm motility in mouse species. J. Biol. Chem. 290:20613-26. https://doi.org/10.1074/jbc.M115.664813
Yata, V. K., D. K. Gangwar, V. Sharma, S. K. Dubey, S. K. Yadav, S. Choudhary, S. Kumar, T. K. Mohanty, & A. K. Mohanty. 2020. Semen analysis and sperm characteristics of Haran Fries cattle. Anim. Reprod. Sci. 212:106250. https://doi.org/10.1016/j.anireprosci.2019.106250
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.