Growth and Development of Black-Boned Chicken Embryonic Stem Cells for Culture Meat using Different Serums as Medium

P. Promtan, J. Panatuk, W. Kongbuntad, D. Amornlerdpison, Y. Nanta, N. Pripwai, W. Thaworn, W. Pattanawong

Abstract

This research was conducted to investigate the growth performance of black-boned chicken embryonic stem (ES) cells for the future development of cultured meat. Black-boned chicken ES cells were isolated and cultured from fertilized eggs. The treatments applied were: fetal bovine serum (FBS) (T1), commercial chicken serum (SCK) (T2), Pradu Hang Dam chicken serum (PDC) (T3), and black-boned chicken serum (BBC) (T4). Black-boned chicken ES cells were cultured at 37.0 °C in a humidified environment of 5% CO2, for 10 days. The growth of black-boned chicken ES cells concentration was measured by the absorbance at 450 nm. A haemocytometer was used to count the number of black-boned chicken ES cells. Comparing the protein content of cultured meat and chicken meat was collected for combustion and proximate analysis. All collected data were analyzed using ANOVA in a completely randomized design. T4 tended to have a higher number and growth rate than the other groups, followed by T3, T2, and T1, respectively. When counted ES cells final, T4 had a significantly higher number and growth rate than the other groups (p<0.001). Comparing the protein content, it was found that cultured meat had significantly more protein than the other groups (p<0.001), and characteristics (alignment and cross-section of muscle fibers) were not different from chicken cells. Finally, the cultivation of black-boned chicken ES cells necessitates the use of a medium containing black-boned chicken serum in the growth and development of black-boned Chicken ES cells for culture meat.

References

Alberts, B. 2017. Molecular Biology of The Cell. WW Norton & Company, New York. https://doi.org/10.1201/9781315735368

Alberts, B., D. Bray, K. Hopkin, A. D. Johnson, J. Lewis, M. Raff, K. Roberts, & P. Walter. 2015. Essential Cell Biology. Garland Science, New York.

Alexander, P., C. Brown, A. Arneth, C. Dias, J. Finnigan, D. Moran, & M. D. Rounsevell. 2017. Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use?. Glob. Food Sec. 15:22-32. https://doi.org/10.1016/j.gfs.2017.04.001

AOAC. 2022. Official methods of analysis of AOAC International. AOAC International.

Aubel, P. & B. Pain. 2013. Chicken embryonic stem cells: Establishment and characterization. Methods Mol. Biol. 1074:137–150. https://doi.org/10.1007/978-1-62703-628-3_11

Azizi, H., H. G. Hamidabadi, & T. Skutella. 2019. Differential proliferation effects after short-term cultivation of mouse spermatogonial stem cells on different feeder layers. Cell. J. 21:186–193. https://doi.org/10.22074/CELLJ.2019.5802

Campinho, P., M. Behrndt, J. Ranft, T. Risler, N. Minc, & C. P. Heisenberg. 2013. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nat. Cell Biol. 15:1405-1414. https://doi.org/10.1038/ncb2869

Chaiwat, S. 2020. 2020-2022 Industry Business Trends: Chilled, Frozen, and Processed Chicken. Thailand Industry Outlook 2021-23.

Ching, X. L., N. A. A. B. Zainal, V. Luang-In, & N. L. Ma. 2022. Lab-based meat the future food. Environ. Adv. 10:100315. https://doi.org/10.1016/j.envadv.2022.100315

Farzaneh, M., F. Attari, P. E. Mozdziak, & S. E. Khoshnam. 2017. The evolution of chicken stem cell culture methods. Br. Poult. Sci. 58:681-686. https://doi.org/10.1080/00071668.2017.1365354

Farzaneh, M., M. Zare, S. N. Hassani, & H. Baharvand. 2018. Effects of various culture conditions on pluripotent stem cell derivation from chick embryos. J. Cell. Biochem. 119:6325-6336. https://doi.org/10.1002/jcb.26761

Firmino, J., D. Rocancourt, M. Saadaoui, C. Moreau, & J. Gros. 2016. Cell division drives epithelial cell rearrangements during gastrulation in chick. Dev. Cell. 36:249-261. https://doi.org/10.1016/j.devcel.2016.01.007

Genovese, N., D. Desmet, & E. Schulze. 2019. Compositions and methods for increasing the efficiency of cell cultures used for food production. US patent EP3638777A4.

Gibson-Corley, K. N., A. K. Olivier, & D. K. Meyerholz. 2013. Principles for valid histopathologic scoring in research. Vet. Pathol. 50:1007-1015. https://doi.org/10.1177/0300985813485099

Habeeb, A. A. & A. A. EL-Tarabany. 2018. Impact of environmental pollution on healthy and productivity of farm animals. Am. Int. J. Multidiscip. Sci. Res.1:17-25. https://doi.org/10.46281/aijmsr.v1i3.189

Ichikawa, K. & H. Horiuchi. 2023. Fate decisions of chicken primordial germ cells (PGCs): Development, integrity, sex determination, and self-renewal mechanisms. Genes 14:612. https://doi.org/10.3390/genes14030612

Kang, K. S., H. C. Lee, H. J. Kim, H. G. Lee, Y. M. Kim, H. J. Lee, Y. H. Park, S. Y. Yang, D. Rengaraj, T. S. Park, J. Y. Han. 2015. Spatial and temporal action of chicken primordial germ cells during initial migration. Reprod. 149:179-187. https://doi.org/10.1530/REP-14-0433

Li, Y. F., R. R. He, B. Tsoi, & H. Kurihara. 2012. Bioactivities of chicken essence. J. Food Sci. 77:R105-R110. https://doi.org/10.1111/j.1750-3841.2012.02625.x

Lin, H. J., H. Mersmann, & S. T. Ding. 2015. Establishment of a transgenic quail model and an ex vivo culture system of yolk sac membrane endodermal epithelium cell for studying functions of individual genes in avian embryonic development. FASEB. J. 29:754-758. https://doi.org/10.1096/fasebj.29.1_supplement.754.8

Llames, S., E. García-Pérez, Á. Meana, F. Larcher, & M. del Río. 2015. Feeder layer cell actions and applications. Tissue Engineering Part B: Review. 21:345-353. https://doi.org/10.1089/ten.teb.2014.0547

Mateti, T., A. Laha, & P. Shenoy. 2022. Artificial meat industry: Production methodology, challenges, and future. J. Mater. 74:3428-3444. https://doi.org/10.1007/s11837-022-05316-x

McClements, D. J. & L. Grossmann. 2021. The science of plant‐based foods: Constructing next‐generation meat, fish, milk, and egg analogs. Compr. Rev. Food Sci. Food Saf. 20:4049-4100. https://doi.org/10.1111/1541-4337.12771

Moritz, J. 2017. Cultured meat: Foresight analysis. Maastricht University, Neitherlands.

Muhr, J. & Hagey, D. W. 2021. The cell cycle and differentiation as integrated processes: Cyclins and CDKs reciprocally regulate Sox and Notch to balance stem cell maintenance. Bioessays 43:2000285. https://doi.org/10.1002/bies.202000285

Naito, M., T. Harumi, & T. Kuwana. 2015. Long-term culture of chicken primordial germ cells isolated from embryonic blood and production of germline chimaeric chickens. Anim. Reprod. Sci. 153:50-61. https://doi.org/10.1016/j.anireprosci.2014.12.003

Petracci, M., S. Mudalal, E. Babini, & C. Cavani. 2014. Effect of white striping on chemical composition and nutritional value of chicken breast meat. Italian J. Anim. Sci. 13:3138. https://doi.org/10.4081/ijas.2014.3138

Pollard, T. D., W. C. Earnshaw, J. Lippincott-Schwartz, & G. T. Johnson. 2017. G1 Phase and Regulation of Cell Proliferation. Cell Biology (Third Edition). Elsevier. pp. 713-726. https://doi.org/10.1016/B978-0-323-34126-4.00041-4

Schaller, D. R. & W. D. Powrie. 1971. Scanning electron microscopy of skeletal muscle from rainbow trout, turkey and beef. J. Food Sci. 36:552-559. https://doi.org/10.1111/j.1365-2621.1971.tb15127.x

Schmitz-Elbers, M., G. Lukinavičius, & T. H. Smit. 2021. Live fluorescence imaging of F-Actin organization in chick whole embryo cultures using SiR-Actin. Cells 10:1578. https://doi.org/10.3390/cells10071578

Van der Weele, C., P. Feindt, A. J. van der Goot, B. van Mierlo, & M. van Boekel. 2019. Meat alternatives: an integrative comparison. Trends Food Sci. Technol. 88:505-512. https://doi.org/10.1016/j.tifs.2019.04.018

Wang, Y., Y. Yang, D. Pan, J. He, J. Cao, H. Wang, & P. Ertbjerg. 2020. Metabolite profile based on 1H NMR of broiler chicken breasts affected by wooden breast myodegeneration. Food Chem. 310:125852. https://doi.org/10.1016/j.foodchem.2019.125852

Weng, K., W. Huo, Y. Li, Y. Zhang, Y. Zhang, G. Chen, & Q. Xu. 2022. Fiber characteristics and meat quality of different muscular tissues from slow-and fast-growing broilers. Poult. Sci. 101:101537. https://doi.org/10.1016/j.psj.2021.101537

Whyte, J., J. D. Glover, M. Woodcock, J. Brzeszczynska, L. Taylor, A. Sherman, P. Kaiser, & M. J. McGrew. 2015. FGF, insulin, and SMAD signaling cooperate for avian primordial germ cell self-renewal. Stem Cell Rep. 5:1171-1182. https://doi.org/10.1016/j.stemcr.2015.10.008

Xiong, C., M. Wang, W. Ling, D. Xie, X. Chu, Y. Li, Y. Huang, T. Li, E. Otieno, X. Qiu, & X. Xiao. 2020. Advances in isolation and culture of chicken embryonic stem cells in vitro. Cell. Reprogramming. 22:43-54. https://doi.org/10.1089/cell.2019.0080

Zakrzewski, W., M. Dobrzyński, M. Szymonowicz, & Z. Rybak. 2019. Stem cells: past, present, and future. Stem Cell Res. Ther. 10:1-22. https://doi.org/10.1186/s13287-019-1165-5

Zhang, L., Y. Wu, X. Li, S. Wei, Y. M. Xing, Z. X. Lian, & H. B. Han. 2018. An alternative method for long-term culture of chicken embryonic stem cell in vitro. Stem Cells Int. 2018:2157451. https://doi.org/10.1155/2018/2157451

Zhu, M., M. Wang, Y. Shao, Y. Nan, H. T. Blair, S. T. Morris, & H. Zhang. 2021. Characterization of muscle development and gene expression in early embryos of chicken, quail, and their hybrids. Gene 768:145319. https://doi.org/10.1016/j.gene.2020.145319

Authors

P. Promtan
J. Panatuk
W. Kongbuntad
D. Amornlerdpison
Y. Nanta
N. Pripwai
W. Thaworn
W. Pattanawong
Wpattanawong@gmail.com (Primary Contact)
PromtanP., PanatukJ., KongbuntadW., AmornlerdpisonD., NantaY., PripwaiN., ThawornW., & PattanawongW. (2023). Growth and Development of Black-Boned Chicken Embryonic Stem Cells for Culture Meat using Different Serums as Medium. Tropical Animal Science Journal, 46(3), 354-360. https://doi.org/10.5398/tasj.2023.46.3.354

Article Details

List of Cited By :

Crossref logo