Growth and Development of Black-Boned Chicken Embryonic Stem Cells for Culture Meat using Different Serums as Medium
Abstract
This research was conducted to investigate the growth performance of black-boned chicken embryonic stem (ES) cells for the future development of cultured meat. Black-boned chicken ES cells were isolated and cultured from fertilized eggs. The treatments applied were: fetal bovine serum (FBS) (T1), commercial chicken serum (SCK) (T2), Pradu Hang Dam chicken serum (PDC) (T3), and black-boned chicken serum (BBC) (T4). Black-boned chicken ES cells were cultured at 37.0 °C in a humidified environment of 5% CO2, for 10 days. The growth of black-boned chicken ES cells concentration was measured by the absorbance at 450 nm. A haemocytometer was used to count the number of black-boned chicken ES cells. Comparing the protein content of cultured meat and chicken meat was collected for combustion and proximate analysis. All collected data were analyzed using ANOVA in a completely randomized design. T4 tended to have a higher number and growth rate than the other groups, followed by T3, T2, and T1, respectively. When counted ES cells final, T4 had a significantly higher number and growth rate than the other groups (p<0.001). Comparing the protein content, it was found that cultured meat had significantly more protein than the other groups (p<0.001), and characteristics (alignment and cross-section of muscle fibers) were not different from chicken cells. Finally, the cultivation of black-boned chicken ES cells necessitates the use of a medium containing black-boned chicken serum in the growth and development of black-boned Chicken ES cells for culture meat.
References
Alberts, B., D. Bray, K. Hopkin, A. D. Johnson, J. Lewis, M. Raff, K. Roberts, & P. Walter. 2015. Essential Cell Biology. Garland Science, New York.
Alexander, P., C. Brown, A. Arneth, C. Dias, J. Finnigan, D. Moran, & M. D. Rounsevell. 2017. Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use?. Glob. Food Sec. 15:22-32. https://doi.org/10.1016/j.gfs.2017.04.001
AOAC. 2022. Official methods of analysis of AOAC International. AOAC International.
Aubel, P. & B. Pain. 2013. Chicken embryonic stem cells: Establishment and characterization. Methods Mol. Biol. 1074:137–150. https://doi.org/10.1007/978-1-62703-628-3_11
Azizi, H., H. G. Hamidabadi, & T. Skutella. 2019. Differential proliferation effects after short-term cultivation of mouse spermatogonial stem cells on different feeder layers. Cell. J. 21:186–193. https://doi.org/10.22074/CELLJ.2019.5802
Campinho, P., M. Behrndt, J. Ranft, T. Risler, N. Minc, & C. P. Heisenberg. 2013. Tension-oriented cell divisions limit anisotropic tissue tension in epithelial spreading during zebrafish epiboly. Nat. Cell Biol. 15:1405-1414. https://doi.org/10.1038/ncb2869
Chaiwat, S. 2020. 2020-2022 Industry Business Trends: Chilled, Frozen, and Processed Chicken. Thailand Industry Outlook 2021-23.
Ching, X. L., N. A. A. B. Zainal, V. Luang-In, & N. L. Ma. 2022. Lab-based meat the future food. Environ. Adv. 10:100315. https://doi.org/10.1016/j.envadv.2022.100315
Farzaneh, M., F. Attari, P. E. Mozdziak, & S. E. Khoshnam. 2017. The evolution of chicken stem cell culture methods. Br. Poult. Sci. 58:681-686. https://doi.org/10.1080/00071668.2017.1365354
Farzaneh, M., M. Zare, S. N. Hassani, & H. Baharvand. 2018. Effects of various culture conditions on pluripotent stem cell derivation from chick embryos. J. Cell. Biochem. 119:6325-6336. https://doi.org/10.1002/jcb.26761
Firmino, J., D. Rocancourt, M. Saadaoui, C. Moreau, & J. Gros. 2016. Cell division drives epithelial cell rearrangements during gastrulation in chick. Dev. Cell. 36:249-261. https://doi.org/10.1016/j.devcel.2016.01.007
Genovese, N., D. Desmet, & E. Schulze. 2019. Compositions and methods for increasing the efficiency of cell cultures used for food production. US patent EP3638777A4.
Gibson-Corley, K. N., A. K. Olivier, & D. K. Meyerholz. 2013. Principles for valid histopathologic scoring in research. Vet. Pathol. 50:1007-1015. https://doi.org/10.1177/0300985813485099
Habeeb, A. A. & A. A. EL-Tarabany. 2018. Impact of environmental pollution on healthy and productivity of farm animals. Am. Int. J. Multidiscip. Sci. Res.1:17-25. https://doi.org/10.46281/aijmsr.v1i3.189
Ichikawa, K. & H. Horiuchi. 2023. Fate decisions of chicken primordial germ cells (PGCs): Development, integrity, sex determination, and self-renewal mechanisms. Genes 14:612. https://doi.org/10.3390/genes14030612
Kang, K. S., H. C. Lee, H. J. Kim, H. G. Lee, Y. M. Kim, H. J. Lee, Y. H. Park, S. Y. Yang, D. Rengaraj, T. S. Park, J. Y. Han. 2015. Spatial and temporal action of chicken primordial germ cells during initial migration. Reprod. 149:179-187. https://doi.org/10.1530/REP-14-0433
Li, Y. F., R. R. He, B. Tsoi, & H. Kurihara. 2012. Bioactivities of chicken essence. J. Food Sci. 77:R105-R110. https://doi.org/10.1111/j.1750-3841.2012.02625.x
Lin, H. J., H. Mersmann, & S. T. Ding. 2015. Establishment of a transgenic quail model and an ex vivo culture system of yolk sac membrane endodermal epithelium cell for studying functions of individual genes in avian embryonic development. FASEB. J. 29:754-758. https://doi.org/10.1096/fasebj.29.1_supplement.754.8
Llames, S., E. García-Pérez, Á. Meana, F. Larcher, & M. del Río. 2015. Feeder layer cell actions and applications. Tissue Engineering Part B: Review. 21:345-353. https://doi.org/10.1089/ten.teb.2014.0547
Mateti, T., A. Laha, & P. Shenoy. 2022. Artificial meat industry: Production methodology, challenges, and future. J. Mater. 74:3428-3444. https://doi.org/10.1007/s11837-022-05316-x
McClements, D. J. & L. Grossmann. 2021. The science of plant‐based foods: Constructing next‐generation meat, fish, milk, and egg analogs. Compr. Rev. Food Sci. Food Saf. 20:4049-4100. https://doi.org/10.1111/1541-4337.12771
Moritz, J. 2017. Cultured meat: Foresight analysis. Maastricht University, Neitherlands.
Muhr, J. & Hagey, D. W. 2021. The cell cycle and differentiation as integrated processes: Cyclins and CDKs reciprocally regulate Sox and Notch to balance stem cell maintenance. Bioessays 43:2000285. https://doi.org/10.1002/bies.202000285
Naito, M., T. Harumi, & T. Kuwana. 2015. Long-term culture of chicken primordial germ cells isolated from embryonic blood and production of germline chimaeric chickens. Anim. Reprod. Sci. 153:50-61. https://doi.org/10.1016/j.anireprosci.2014.12.003
Petracci, M., S. Mudalal, E. Babini, & C. Cavani. 2014. Effect of white striping on chemical composition and nutritional value of chicken breast meat. Italian J. Anim. Sci. 13:3138. https://doi.org/10.4081/ijas.2014.3138
Pollard, T. D., W. C. Earnshaw, J. Lippincott-Schwartz, & G. T. Johnson. 2017. G1 Phase and Regulation of Cell Proliferation. Cell Biology (Third Edition). Elsevier. pp. 713-726. https://doi.org/10.1016/B978-0-323-34126-4.00041-4
Schaller, D. R. & W. D. Powrie. 1971. Scanning electron microscopy of skeletal muscle from rainbow trout, turkey and beef. J. Food Sci. 36:552-559. https://doi.org/10.1111/j.1365-2621.1971.tb15127.x
Schmitz-Elbers, M., G. Lukinavičius, & T. H. Smit. 2021. Live fluorescence imaging of F-Actin organization in chick whole embryo cultures using SiR-Actin. Cells 10:1578. https://doi.org/10.3390/cells10071578
Van der Weele, C., P. Feindt, A. J. van der Goot, B. van Mierlo, & M. van Boekel. 2019. Meat alternatives: an integrative comparison. Trends Food Sci. Technol. 88:505-512. https://doi.org/10.1016/j.tifs.2019.04.018
Wang, Y., Y. Yang, D. Pan, J. He, J. Cao, H. Wang, & P. Ertbjerg. 2020. Metabolite profile based on 1H NMR of broiler chicken breasts affected by wooden breast myodegeneration. Food Chem. 310:125852. https://doi.org/10.1016/j.foodchem.2019.125852
Weng, K., W. Huo, Y. Li, Y. Zhang, Y. Zhang, G. Chen, & Q. Xu. 2022. Fiber characteristics and meat quality of different muscular tissues from slow-and fast-growing broilers. Poult. Sci. 101:101537. https://doi.org/10.1016/j.psj.2021.101537
Whyte, J., J. D. Glover, M. Woodcock, J. Brzeszczynska, L. Taylor, A. Sherman, P. Kaiser, & M. J. McGrew. 2015. FGF, insulin, and SMAD signaling cooperate for avian primordial germ cell self-renewal. Stem Cell Rep. 5:1171-1182. https://doi.org/10.1016/j.stemcr.2015.10.008
Xiong, C., M. Wang, W. Ling, D. Xie, X. Chu, Y. Li, Y. Huang, T. Li, E. Otieno, X. Qiu, & X. Xiao. 2020. Advances in isolation and culture of chicken embryonic stem cells in vitro. Cell. Reprogramming. 22:43-54. https://doi.org/10.1089/cell.2019.0080
Zakrzewski, W., M. Dobrzyński, M. Szymonowicz, & Z. Rybak. 2019. Stem cells: past, present, and future. Stem Cell Res. Ther. 10:1-22. https://doi.org/10.1186/s13287-019-1165-5
Zhang, L., Y. Wu, X. Li, S. Wei, Y. M. Xing, Z. X. Lian, & H. B. Han. 2018. An alternative method for long-term culture of chicken embryonic stem cell in vitro. Stem Cells Int. 2018:2157451. https://doi.org/10.1155/2018/2157451
Zhu, M., M. Wang, Y. Shao, Y. Nan, H. T. Blair, S. T. Morris, & H. Zhang. 2021. Characterization of muscle development and gene expression in early embryos of chicken, quail, and their hybrids. Gene 768:145319. https://doi.org/10.1016/j.gene.2020.145319
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.