Association and Expression of Cluster of Differentiation 4 (CD4) Gene in IPB-D2 Chicken Related to Immunocompetence Index
Abstract
The CD4 gene plays an important role in the immune process by producing CD4 molecules that aid in producing antibodies. IPB-D2 chickens are selected from IPB-D2 chickens based on IgY concentration and ND antibody titer. This study aimed to analyze the polymorphism of the CD4 gene, unravel the mRNA expression of CD4 gene in IPB-D2 chicken related to the immunocompetence index, and detect the CD4 gene pathway. The total samples used were 100 IPB-D2 G2 chickens aged 21 weeks. Blood samples were collected for ELISA test, HI test, sequencing test, and seca tonsil tissue for relative mRNA expression. Polymorphism and association data were analyzed using MEGAX, FinchTV, SNPstat, and DNAsp. The relative mRNA expression analysis was conducted using qRT-PCR. The pathway analysis of the CD4 gene was performed using the Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis. The result showed there were 4 SNPs of the CD4 gene in IPB-D2 chicken, i.e., g.7526 C>T, g.7825 C>T, g.8100 C>A, and g.8157 T>A. All CD4 SNPSs showed no association with IgY concentration and ND antibody titers. Relative mRNA expression shows that IPB-D2 chickens with high ND antibody titers have a higher level of expression when compared to IPB-D2 chickens with low ND antibody titers. Furthermore, pathway analysis showed the CD4 gene involved in the T cell receptor (TcR) signaling process. This study concludes that the CD4 gene is polymorphic and involved in the T cell receptor signaling process. This study demonstrated that polymorphisms of the CD4 gene in IPB-D2 chicken might not contribute to the IgY concentration and ND antibody titer but can serve as a reference in the study of CD4 genes in the other chicken breeds related to the other immunocompetence index.
References
Al-Habib, M. F., S. Murtini, A. Gunawan, N. Ulupi, & C. Sumantri. 2020. Polymorphism of CD1B Gene and ts association with yolk immunoglobulin (IgY) concentration and Newcastle disease antibody titer in IPB-D1 Chicken. Trop. Anim. Sci. J. 43:197-204. https://doi.org/10.5398/tasj.2020.43.3.197
Betts, M. J. & R. B. Russel. 2003. Amino Acid Properties and Consequences of Subtitutions. In Bioinformatics for Geneticists. p. 289-316. https://doi.org/10.1002/0470867302.ch14
Dar, M. A., P. T. Mumtaz, S. A. Bhat, M. Nabi, Q. Taban, R. A. Shah, H. M. Khan, & S. M. Ahmad. 2018. Genetics of Disease Resistance in Chicken. In: Application of Genetics and Genomics in Poultry Science. p. 163-174. https://doi.org/10.5772/intechopen.77088
Glatzova, D. & M. Cabecauer. 2019. Dual role of CD4 in peripheral T lymphocytes. Front. Immunol. 10:1-11. https://doi.org/10.3389/fimmu.2019.00618
Gunawan, A., D. Anggrela, K. Lityarini, M. A. Abuzahra, Jakaria, M. Yamin, I. Inounu, & C. Sumantri. 2018. Identification of single nucleotide polymorphism and pathway analysis of apolipoprotein A5 (APOA5) related to fatty acid traits in Indonesian sheep. Trop. Anim. Sci. J. 41:165-173. https://doi.org/10.5398/tasj.2018.41.3.165
Hewajuli, D. A. & N. L. P. I. Sharmayanti. 2015. Sistem kekebalan non-spesifik dan spesifik pada unggas terhadap Newcastle Disease. Wartazoa 25: 145-146.
Jiang, X., D. Fuller, Y. P. Hsiesh, & Q. Rao. 2018. Monoclonal antibody-based ELISA for the quantification of porcine hemoglobin in meat product. Food Chem. 250:170-179. https://doi.org/10.1016/j.foodchem.2018.01.032
Kadzierska, K. & M. Koutsakos. 2020. The ABC of major histocompability complexes and T cell receptors in health and disease. Viral Immunol. 33:160-178. https://doi.org/10.1089/vim.2019.0184
Lestari, D., S. Murtini, N. Ulupi, & C. Sumantri. 2022. Polymorphism and association of DMA gene with total IgY concentration and ND antibody titer in IPB-D2 chicken line. Trop. Anim. Sci. J. 45:1-8. https://doi.org/10.5398/tasj.2022.45.1.1
Luo, J., Y. Yu, H. Zhang, F. Tian, S. Chang, H. H. Cheng, & J. Song. 2011. Down-regulation of promotor methylation level of CD4 gene after MDV infection in MD-suscetible chicken line. BMC Proceeding International Symposium on Animal Genomics for Animal Health. 5:1-5. https://doi.org/10.1186/1753-6561-5-S4-S7
Miraj, N. N., C. Sumantri, S. Murtini, & N. Ulupi. 2022. Keragaman gen BG1 sebagai kandidat gen penciri ketahanan penyakit pada calon galur ayam IPB-D2. Jurnal Ilmu Produksi Teknologi Hasil Peternakan 10:141-151. https://doi.org/10.29244/jipthp.10.3.144-151
Morel, P. A. 2018. Differential T-cell receptor signal for T helper cell programming. Immunol. 155:63-71. https://doi.org/10.1111/imm.12945
Napolitano, F., F. Grandoni, G. De Matteis, L. Degano, D. Vicario, & L. Buttazzoni. 2021. Novel SNPs and haplotypes identified in CD4 gene and their influence on deregressed MACE EBV indexed of milk-related traits in Simmental breed. J. Dairy Res. 88:368-373. https://doi.org/10.1017/S0022029921000832
Oberlander, B., K. Failing, C. M. Jungst, N. Neuhaus, M. Kierz, & F. M. Paula-Riber. 2020. Evaluation of Newcastle Disease antibody titers in backyard poultry in Germany with a vaccination interval of twelve weeks. PLoS ONE 15:1-4. https://doi.org/10.1371/journal.pone.0238068
OIE. 2012. Newcastle Disease, in Manual of Standars for Diagnostic Tests and Vaccine. Paris. p. 1-19.
Oyugi, J. O., F. C. M. Vouriot, J. Alimonti, S. Wayne, M. Luo, A. M. Land, Z. Ao, X. Yao, R. P. Sekaly, L. J. Elliott, J. N. Simonsen, T. B. Ball, W. Jaoko, J. Kimani, F. A. Plummer, & K. R. Fowke. 2009. A common Cd4 gene variant is associated with an increased risk of HIV-1 infection in Kenyan female commercial sex workers. J. Infect. Dis. 199:1327-1334. https://doi.org/10.1086/597616
Pan, W., C. Liu, J. Zhang, X. Gao, S. Yu, H. tan, J. Yu, D. Qian, J. Li, S. Bian, J. Yang, C. Zhang, L. Huang, & J. Jin. 2019. Association between single nucleotide polymorphism in PPARA and EPAS1 gene and high-altitude appetite loss in Chinese young men. Front. Physiol. 10:1-8. https://doi.org/10.3389/fphys.2019.00059
Putri, A. & S. Wathon. 2018. Aplikasi single nucleotide polymorphism (SNP) dalam studi farmakogenomik untuk pengembangan obat. BioTrends. 9:69-74.
Putri, N. T., S. Murtini, N. Ulupi, I. Khaerunnisa, & C. Sumantri. 2022. Polymorphism of the Thy1 (Thymocyte differentiation antigen 1) gene in candidate IPB-D2 chicken line. Jurnal Ilmu Ternak Veteriner 27:186-194. https://doi.org/10.14334/jitv.v27i4.3029
Rahman, M. Mostafijur, Sarker, R. Deb, & M. Nooruzzaman. 2017. Evaluation of serum antibody titer level against Newcastle disease virus in vaccinated broiler chicken. Annals Veterinary Animal Science 4:94-98.
Sarasofa, S. D. & G. Siu. 1999. Control of CD4 gene expression: connecting signals to outcomes in T cell development. Brazilian Journal Medical Biological Research 32:785-803. https://doi.org/10.1590/S0100-879X1999000700001
Sarcheshmei, M., H. Dadras, N. Mosleh, & M. J. Mehrabanpour. 2016. Comparative evaluation of the protective efficacy of different vaccination programs against a virulent field strain of the Newcastle disease virus in broiler. Rev. Bras. Cienc. Avic. 18:363-370. https://doi.org/10.1590/1806-9061-2015-0128
Shah, K., A. Al-Haidari, J. Sun, & J. U. Kazi. 2021. T cell receptpr (TCR) signaling in health and disease. Signal Transduct. Targete Ther. 6:1-26. https://doi.org/10.1038/s41392-021-00823-w
Silver, N., S. Best, J. Jiang, & S. L. Thein. 2006. Selection of housekeeping gene for gene exspression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 7:33. https://doi.org/10.1186/1471-2199-7-33
Sun, H., S. Chen, X. Cai, G. Xu, & L. Qu. 2013. Correlation analysis of the total IgY hen serum, egg yolk and offspring serum. J. Anim. Sci. Biotechnol. 4:1-4. https://doi.org/10.1186/2049-1891-4-10
Tambasco, D. D., C. C. P. Paz, M. Tambasco-Studart, A. P. Pereira, M. M. Alencar, A. R. Freitas, L. L. Coutinho, I. U. Packer, & C. A. Regitano. 2003. Candidate genes for growth traits in beef cattle cross Bos taurus x Bos indicus. J. Anim. Breed. Genet. 120:51-56. https://doi.org/10.1046/j.1439-0388.2003.00371.x
Wang, Q., F. Wang, L. Liu, Q. Li, R. Liu, M. Zheng, H. Cui, J. Wen, & G. Zhao. 2019. Genetic mutation analysis of high and low IgY chickens by capture sequencing. Animals 9:1-10. https://doi.org/10.3390/ani9050272
Zeb, S., N. Ali, S. Niaz, A. Rasheed, I. Khattak, N. U. Khan, Y. Wang, & T. Usman. 2020. Association of SNPs in the coding regions of CD4 gene with mastitis susceptibility and production traits in dairy cattle. J. Vet. Med. 50:75-80.
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.