Dairy Cattle Body Width Principal Component and the Correlation Level to Milk Yields as An Option for Selection Approach

S. Prabowo, Ş. İnal, M. Garip

Abstract

The body-width linear traits of dairy cattle affect their production capacity, particularly milk yield characteristics. Even so, the prominent dairy cattle body width linked to the milk yield up to this point is not explicitly articulated. Therefore, this exploration aimed to identify the best body width characteristic related to production capacity and milk yields as a selection criterion. The investigation samples were 121 heads of Friesian Holsteins raised in Indonesia. The total measured body width of dairy cattle was eleven variables. All parameters were examined on a centimeter unit scale. R software version 4.2.1 is synchronized with RStudio to implement principal component analysis (PCA), Pearson’s correlation, and regression. The PCA uncovered the shoulder width (SHW), chest width (CHW), loin width (LNW), rump width (RMW), thurl width (TLW), pin width (PNW), and rear udder width (RUW) as significant elements of body width. Afterward, the highest relationship to milk yield characteristics was controlled by the rear udder width (RUW) and teat back-view width (TBW) traits serially. Due to the TBW being disqualified from the first principal component, its place is taken by the PNW trait. As an epilogue, exploiting the RUW trait as the main priority for the lactation cow selection scheme is strongly advocated. Meanwhile, the PNW trait is the initial priority for calves and heifers.

References

Abdel-Lattif, F. H. 2022. Body condition score and its association with productive and reproductive performance and health status in dairy cattle. IOP Conf. Ser. Earth Environ. Sci. 1060:012069. https://doi.org/10.1088/1755-1315/1060/1/012069

Abreu, B. D. S., S. B. P. Barbosa, E. C. D.Silva, K. R. Santoro, Â. M. V. Batista, & R. L. V. Martinez. 2020. Principal component and cluster analyses to evaluate production and milk quality traits. Cienc. Agron. 51:20196977. https://doi.org/10.5935/1806-6690.20200060

Alassane, Y., S. G. Ahounou, S. S. Toleba, A. A. Adjakpa, I. O. Dotche, I. Houaga, N. Moula, N. Antoine-Moussiaux, J.-L. Hornick, & A. K. I. Youssao. 2018. Zootechnical performance of Girolando cattle at Kpinnou Breeding Farm, South-West of Benin Republic. J. Adv. Vet. Anim. Res. 5:123-130. https://doi.org/10.5455/javar.2018.e255

Alcantara, L. M., C. F. Baes, G. A. de Oliveira Junior, & F. S. Schenkel. 2022. Conformation traits of Holstein cows and their association with a Canadian economic selection index. Can. J. Anim. Sci. 102:490-500. https://doi.org/10.1139/cjas-2022-0013

Alimzhanova, L. V., S. K. Bostanova, Y. N. Sheiko, S. A. Issabekova, & B. E. Alimzhanova. 2018. The level of milk production, depending on the exterior traits of dairy cows. Online J. Biol. Sci. 18:29-36. https://doi.org/10.3844/ojbsci.2018.29.36

Alzyoud, J. A. M., K. M. Jacoub, S. A. Omoush, & A. A. R. S. Al-Shudiefat. 2021. Da Vinci’s Vitruvian Man, golden ratio and anthropometrics. Ital. J. Anat. Embryol. 125:67-81. https://doi.org/10.36253/ijae-10743

Araújo de Melo, B., A. de G. Couto, F. de L. Silva, K. Hongyu, F. C. T. de Araújo, S. G. M. da Silva, R. R. S. Rios, M. T. dos Santos, & A. B. Fraga. 2020. Multivariate analysis of body morphometric traits in conjunction with performance of reproduction and milk traits in crossbred progeny of Murrah× Jafarabadi buffalo (Bubalus bubalis) in North-Eastern Brazil. PLoS ONE 15:e0231407. https://doi.org/10.1371/journal.pone.0231407

Artigue, H. & G. Smith. 2019. The principal problem with principal components regression. Cogent Math. Stat. 6:1622190. https://doi.org/10.1080/25742558.2019.1622190

Aytekin, İ., E. Eyduran, K. Karadas, R. Akşahan, & İ. Keskin. 2018. Prediction of fattening final live weight from some body measurements and fattening period in young bulls of crossbred and exotic breeds using mars data mining algorithm. Pak. J. Zool. 50:189-195. https://doi.org/10.17582/journal.pjz/2018.50.1.189.195

Babich, E. A., A. B. Nugmanov, L. Y. Ovchinnikova, A. A. Ovchinnikov, & M. Z. Aubakirov. 2016. The efficiency of dairy herds created based on first-calf heifers of” Karatomar” black-and-white interbreed cattle on Northern Kazakhstan. Res. J. Pharm. Biol. Chem. Sci. 7:2376-2381. https://elibrary.ru/item.asp?id=27952605

Baimukanov, D. A., A. T. Bissembayev, S. D. Batanov, I. A. Baranova, & N. N. Kuzmina. 2022. Exterior and body types of cows with different levels of dairy productivity. Am. J. Anim. Vet. 17:154-164. https://doi.org/10.3844/ajavsp.2022.154.164

Basavaraj, H., P. Waghmare, V. M. Patil, M. D. Suranagi, A. R. Desai, & H. Mallikarjun. 2020. Udder and teat biometry and its relation with milk production in different strains of Deoni Cattle. International Journal Livestock Research 10:78-83. https://doi.org/10.5455/ijlr.20191220072114

Batanov, S., O. Starostina, & I. Baranova. 2020. Genetic parameters of productivity and exterior traits of dairy cattle. IOP Conf. Ser: Earth Environ. Sci. 548:032023. https://doi.org/10.1088/1755-1315/548/3/032023

Bell, M. J., M. M. Maak, M. M. Sorley, & R. Proud. 2020. Digital images can objectively measure body condition of dairy cows. Proceedings British Society Animal Science Advances in Animal Biosciences 11:73. Cambridge University Press. Nottingham, UK. https://doi.org/10.1017/S2040470020000011

Bitaraf Sani, M., S. A. Hosseini, N. Asadzadeh, N. Ghavipanje, M. Afshin, M. Jasouri, M. H. Banabazi, S. Esmaeilkhanian, J. Z. Harofte, A. S. Naderi, & P. A. Burger. 2022. A new approach in the evaluation of dairy camels: Using test day milk and morphometric records. J. Dairy 3:78-86. https://doi.org/10.3390/dairy3010006

Bobić, T., P. Mijić, G. Vučković, M. Gregić, M. Baban, & V. Gantner. 2014. Morphological and milkability breed differences of dairy cows. Mljekarstvo 64:71-78. https://hrcak.srce.hr/file/179836

Bradford, H. L. 2013. Estimation of Genetic Parameters for Udder Quality in Hereford Cattle Kansas State University. Manhattan, Kansas http://hdl.handle.net/2097/15603 [December 23, 2022].

Bretschneider, G., D. R. Arias, & A. Cuatrin. 2015. Comparative evaluation of udder and body conformation traits of first lactation ¾ Holstein x ¼ Jersey versus Holstein cows. Arch. Med. Vet. 47:85-89. https://doi.org/10.4067/S0301-732X2015000100014

Carillo, M. F., F. F. Largo, & R. F. Ceballos. 2019. Principal component analysis on the Philippine health data. Int. J. Ecol. Econ. Stat. 1902:07905. https://doi.org/10.2139/ssrn.3339627

Diwan, M. F. 2017. Comparative study of the conformational parameters head and neck traits in Holstein and local breeds of dairy cattle. Al-Qadisiyah Journal Veterinary Medicine Sciences16:1-4. https://doi.org/10.29079/vol16iss1art27

El-Bouyahiaoui, R., B. Belkheir, F. Moulla, H. Mansouri, M. Benidir, & A. Djaout. 2021. Morphological characterization and study of zootechnical indices of Tazegzawt sheep population in Eastern Algeria. Iran. J. Appl. Anim. Sci. 11:741-748. https://ijas.rasht.iau.ir/article_686705.html

Endres, M., T. DeVries, M. Von Keyserlingk, & D. Weary. 2005. Effect of feed barrier design on the behavior of loose-housed lactating dairy cows. J. Dairy Sci. 88:2377-2380. https://doi.org/10.3168/jds.S0022-0302(05)72915-5

Ermetin, O. & B. Dağ. 2021. Estimation of genetic parameters and relationships between type traits and milk yield of Holstein cows in Turkey. Arq. Bras. Med. Vet. Zootec. 73:1371-1380. https://doi.org/10.1590/1678-4162-12449

Firdaus, F., S. Nugroho, & H. Widodo. 2021. A comparison of principal component analysis and maximum likelihood factor analysis in bank health ratio. Jurnal Ilmu Dasar. 22:147-152. https://doi.org/10.19184/jid.v22i2.13487

Gaviria, M. S. & J. J. E. Zuluaga. 2014. Association between conformation traits and reproductive traits in Holstein cows in the department of Antioquia-Colombia. Rev. Fac. Nac. Agron. Medellin 67:7321-7329. https://doi.org/10.15446/rfnam.v67n2.44174

Gehrke, M., D. Marccinkowski, & A. Gebska,. 2013. The influence of feto-pelvic disproportion on the fertility of milk cows. Int. J. Appl. Res. Vet. Med. 11:25-35. http://www.jarvm.com/articles/Vol11Iss1/Vol10%20Iss3%20%20Mgehrke.pdf

Gruber, L., M. Ledinek, F. Steininger, B. Fuerst-Waltl, K. Zottl, M. Royer, K. Krimberger, M. Mayerhofer, & C. Egger-Danner. 2018. Body weight prediction using body size measurements in Fleckvieh, Holstein, and Brown Swiss dairy cows in lactation and dry periods. Arch. Anim. Breed. 61:413-424. https://doi.org/10.5194/aab-61-413-2018

Grzesiak, W., K. Adamczyk, D. Zaborski, & J. Wójcik. 2022. Estimation of dairy cow survival in the first three lactations for different culling reasons using the Kaplan–Meier method. Animals 12:1942. https://doi.org/10.3390/ani12151942

Guarín, J., C. Baumberger, & P. Ruegg. 2017. Anatomical characteristics of teats and premilking bacterial counts of teat skin swabs of primiparous cows exposed to different types of bedding. J. Dairy Sci. 100:1436-1444. https://doi.org/10.3168/jds.2016-11514

Güler, O., A. Diler, M. Yanar, R. Aydın, & R. Kocyıgıt. 2019. Appraisal of linear type traits in Simmental cows reared on high altitude of Eastern Turkey. J. Agric. Sci. 26:331-338. https://doi.org/10.15832/ankutbd.532130

Hakim, L., A. Susanto, & A. Budiarto. 2020. Heritability and correlation of linear traits in Holstein cows in Indonesia. International Journal Dairy Science 15:99-107. https://doi.org/10.3923/ijds.2020.99.107

Houssou, H., M. Bensalem, H. Belhouchet, H. E. Hezam, & T. Khenenou. 2023. Genetic and non-genetic factors affecting dystocia in cattle, Algeria: Using pelvic size to predict calving difficulty. Genetics Biodiversity Journal 7:88-94.

ICAR. 2014. International Agreement of Recording Practices - ICAR Recording Guidelines. https://pecuaria.pt/docs/Guidelines_2014.pdf [January 11, 2023].

ICAR. 2022. Appendix 1 of Section 5 of the ICAR Guidelines - The standard trait definition for Dairy Cattle In ICAR Guidelines, The Global Standard for Livestock Data (pp. 1-76). https://www.icar.org/Guidelines/05-Conformation-recording-Appendix-1.pdf [January 10, 2023].

Jolliffe, I. T. & J. Cadima. 2016. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. Lond. A. 374:20150202. https://doi.org/10.1098/rsta.2015.0202

Junior, G. O., F. Schenkel, L. Alcantara, K. Houlahan, C. Lynch, & C. F. Baes. 2021. Estimated genetic parameters for all genetically evaluated traits in Canadian Holsteins. J. Dairy Sci. 104:9002-9015. https://doi.org/10.3168/jds.2021-20227

Kalaivani, S., K. Sivakumar, & S. Balamuralitharan. 2020. Higher order principal component analysis of eigen values with special structures covariance matrices. AIP Conf. Proc. 2277:150002. https://doi.org/10.1063/5.0025241

Kang, H. & H. Zhao. 2020. Description and application research of multiple regression model optimization algorithm based on data set denoising. J. Phys. Conf. Ser. 1631:012063. https://doi.org/10.1088/1742-6596/1631/1/012063

Kern, E. L., J. A. Cobuci, C. N. Costa, C. M. McManus, & J. B. Neto. 2015. Genetic association between longevity and linear type traits of Holstein cows. Sci. Agric. 72:203-209. https://doi.org/10.1590/0103-9016-2014-0007

Khan, M. & M. Khan. 2015. Non-genetic factors affecting linear type traits in Sahiwal cows. J. Anim. Plant Sci. 25:29-36. https://www.thejaps.org.pk/docs/v-25-01/05.pdf

Khan, M. A. & M. S. Khan. 2016. Genetic and phenotypic correlations between linear type traits and milk yield in Sahiwal cows. Pak. J. Agric. Sci. 53:483-489. https://doi.org/10.21162/PAKJAS/16.3369

Lush, J. L. & R. R. Shrode. 1950. Changes in milk production with age and milking frequency. J. Dairy Sci. 33:338-357. https://doi.org/10.3168/jds.S0022-0302(50)91909-6

Manafiazar, G., L. Goonewardene, F. Miglior, D. Crews, J. Basarab, E. Okine, & Z. Wang. 2016. Genetic and phenotypic correlations among feed efficiency, production and selected conformation traits in dairy cows. Animal 10:381-389. https://doi.org/10.1017/S1751731115002281

Mariana, E., C. Sumantri, D. Astuti, A. Anggraeni, & A. Gunawan. 2020. Association of HSP70 gene with milk yield and milk quality of Friesian Holstein in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 425:012045. https://doi.org/10.1088/1755-1315/425/1/012045

Marinov, I., T. Penev, & Z. Gergovska. 2015. Factors affecting linear type traits in Black-and-White cows. Int. J. Curr. Microbiol. Appl. Sci. 4:374-383. https://www.ijcmas.com/vol-4-10/Marinov%20I.,%20et%20al.pdf

Martin, L., C. Stöcker, H. Sauerwein, W. Büscher, & U. Müller. 2018. Evaluation of inner teat morphology by using high-resolution ultrasound: Changes due to milking and establishment of measurement traits of the distal teat canal. J. Dairy Sci. 101:8417-8428. https://doi.org/10.3168/jds.2018-14500

Martínez-Rodríguez, A., J. Sánchez-Sánchez, M. Vicente-Martínez, M. Martínez-Olcina, L. Miralles-Amorós, & J. A. Sánchez-Sáez. 2021. Anthropometric dimensions and bone quality in international male beach handball players: Junior vs. senior comparison. Nutrients 13:1817. https://doi.org/10.3390/nu13061817

Musa, A. A., Y. Y. Mummed, M. Y. Kurtu, M. Temesgen, & T. G. O’Quinn. 2021. Growth Performance of Arsi, Borana, Harar and HF-Crossbred bulls finished under similar feeding condition. Open J. Anim. Sci. 2022:171-191. https://doi.org/10.4236/ojas.2022.122013

Naserkheil, M., D. H. Lee, & H. Mehrban. 2020. Improving the accuracy of genomic evaluation for linear body measurement traits using single-step genomic best linear unbiased prediction in Hanwoo beef cattle. BMC Genet. 21:1-9. https://doi.org/10.1186/s12863-020-00928-1

Nikitović, J., D. Andrijašević, T. Krajišnik, & Z. Maletić. 2022. Phenotypic characteristics of Gatacko cattle from the region of Herzegovina. J. Agric. For. 68:175-182. https://doi.org/10.17707/AgricultForest.68.3.14

Okwonu, F. Z., B. L. Asaju, & F. I. Arunaye. 2020. Breakdown analysis of Pearson correlation coefficient and robust correlation methods. IOP Conf. Ser. Mater. Sci. Eng. 917:012065. https://doi.org/10.1088/1757-899X/917/1/012065

Otwinowska-Mindur, A., E. Ptak, & W. Jagusiak. 2016. Genetic relationship between lactation persistency and conformation traits in Polish Holstein-Friesian cow population. Czech J. Anim. Sci. 61:75-81. https://doi.org/10.17221/8730-CJAS

Pares-Casanova, P.-M., I. Sinfreu, & D. Villalba. 2013. Application of varimax rotated principal component analysis in quantifying some zoometrical traits of a relict cow. Korean J. Vet. Res. 53:7-10. https://doi.org/10.14405/kjvr.2013.53.1.007

Prabowo, S., Panjono, & Rusman. 2012. Carcass weight predictor variables of live Simmental crossbreed Ongole bulls. Bulletin Animal Science 36:95-102. https://doi.org/10.21059/buletinpeternak.v36i2.1585

Reris, R. & J. P. Brooks. 2015. Principal component analysis and optimization: A tutorial. 14th Informs Comput. Soc. Conf. p. 212-225. Richmond, Virginia. https://doi.org/10.1287/ics.2015.0016

Ríos, H. I. M., E. J. R. Toro, M. F. Cerón-Muñoz, & W. B. Paz. 2022. Phenotypic variability for conformation traits of Bon cattle in Colombia. Res. Sq. 1-15. https://doi.org/10.21203/rs.3.rs-1886742/v1

Rohayem, A., El-khashab, A. Mona, & A. Semaida. 2019. Relationship of udder and body measurements with milk yield in Holstein cows reared in Egypt. Fayoum Journal Agricultural Research Development 33:148-155. https://doi.org/10.21608/fjard.2019.210641

Sampurna, I. P., I. K. Saka, G. L. Oka, & P. Sentana. 2014. Patterns of growth of Bali cattle body dimensions. ARPN Journal Science Technology 4:20-30. https://pksb.unud.ac.id/img/admin/post_attc/9117c3a1a40676bc27fdb9e6abe27b58.pdf

Sawa, A., M. Bogucki, S. Krężel-Czopek, & W. Neja. 2013. Association between rump score and course of parturition in cows. Arch. Anim. Breed. 56:816-822. https://doi.org/10.7482/0003-9438-56-081

Seo, K.-W., D.-W. Lee, E.-G. Choi, C.-H. Kim, & H.-T. Kim. 2012. Algorithm for measurement of the dairy cow’s body parameters by using image processing. Biosyst. Eng. 37:122-129. https://doi.org/10.5307/JBE.2012.37.2.122

Shahid, B., K. Abbasi, M. Khan, & F. Awan. 2022. Morphometric, productive and reproductive traits in indigenous cattle of Northern Azad Jammu & Kashmir. J. Anim. Plant Sci. 32:670-679. https://doi.org/10.36899/JAPS.2022.3.0468

Slimene, A., C. Damergi, T. Najar, & M. Mrad. 2020. Characterization of Holstein cull cows using morphometric measurements: Towards cattle grading system in Tunisia. Adv. Anim. Vet. Sci. 8:1340-1345. https://doi.org/10.17582/journal.aavs/2020/8.12.1340.1345

Soni, A., S. Mishra, A. Santra, N. Singh, R. Pathak, M. Bobade, A. Dubey, N. Sonkar, & B. Sudheer. 2020. Correlation between the linear type traits and milk yields and its composition in dairy cattle. Int. J. Curr. Microbiol. App. Sci. 9:174-180. https://doi.org/10.20546/ijcmas.2020.904.022

Strapák, P., E. Strapáková, M. Rušinová, & I. Szencziová. 2017. The influence of milking on the teat canal of dairy cows determined by ultrasonographic measurements. Czech J. Anim. Sci. 62:75-81. https://doi.org/10.17221/68/2015-CJAS

Tilki, H. Y. & M. Keskin. 2021. Relationships between different body characteristics and milk yield traits in Kilis goats. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi 26:272-277. https://doi.org/10.37908/mkutbd.893730

Török, E., I. Komlósi, V. Szőnyi, B. Béri, G. Mészáros, & J. Posta. 2021. Combinations of linear type traits affecting the longevity in Hungarian Holstein-Friesian cows. Animals 11:3065. https://doi.org/10.3390/ani11113065

Tőzsér, J., N. Fazekas, & M. Szűcs. 2022. Evaluation the body conformation of Limousin candidate bulls in farm performance test. Anim. Welf. Etol. Tartastechnol. 18:64-80.

Tuska, H. S. A., G. Residiwati, M. Van Eetvelde, K. Verdru, M. Meesters, O. B. Pascottini, A. Van Soom, & G. Opsomer. 2022. The effect of season of birth on the morphometrics of newborn Belgian Blue calves. Trop. Anim. Health Prod. 54:76. https://doi.org/10.1007/s11250-022-03090-1

Vernooij, J., F. De Munck, E. Van Nieuwenhuizen, E. Webb, H. Jonker, P. Vos, & D. Holm. 2020. Reliability of pelvimetry is affected by observer experience but not by breed and sex: A cross‐sectional study in beef cattle. Reprod. Domest. Anim. 55:1592-1598. https://doi.org/10.1111/rda.13814

Wiggans, G. 1965. Procedures for Calculating Lactation Records. Handbook of National Cooperative Dairy Herd Improvement Program, G-1. 1-10. https://queries.uscdcb.com/publish/dhi/handbook/calclac.pdf [February 4, 2023].

Wnek, K., M. Golebiewski, T. Przysucha, D. Gozdowski, K. Puppel, & J. Slosarz. 2019. Relationship between the live assessment of Holstein-Friesian bulls and beef breed crosses, and the post-mortem objective evaluation of beef carcasses. J. Ann. Wars. Univ. Life Sci-SGGW. Anim. Sci. 58:79-89. https://doi.org/10.22630/AAS.2019.58.1.9

Wongpom, B., S. Koonawootrittriron, M. A. Elzo, & T. Suwanasopee. 2013. Genetic parameter estimates for rump traits and teat length in a multibreed dairy cattle population in Thailand. ADSA-ASAS Jt. Ann. Meet. 8:185. Indianapolis, USA. https://animal.ifas.ufl.edu/elzo/presentations/regular/docs/2013_8_wongprom.pdf [December 11, 2022].

Xue, X., H. Hu, J. Zhang, Y. Ma, L. Han, F. Hao, Y. Jiang, & Y. Ma. 2022. Estimation of genetic parameters for conformation traits and milk production traits in Chinese Holsteins. Animals. 13:100. https://doi.org/10.3390/ani13010100

Yeman, G., T. Kassa, & A. Getu. 2015. The role of conformational traits on dairy cattle production in Gondar Town, Ethiopia. Point J. Agric. Biotechnol. Res. 1:64-69. https://core.ac.uk/download/pdf/199937333.pdf

Zavadilová, L., E. Kašná, Z. Krupová, & M. Brzáková. 2020. Genetic parameters for clinical mastitis in Czech Holstein cattle. Czech J. Anim. Sci. 65:463-472. https://doi.org/10.17221/151/2020-CJAS

Zhang, H., A. Liu, X. Li, W. Xu, R. Shi, H. Luo, G. Su, G. Dong, G. Guo, & Y. Wang. 2019. Genetic analysis of skinfold thickness and its association with body condition score and milk production traits in Chinese Holstein population. J. Dairy Sci. 102:2347-2352. https://doi.org/10.3168/jds.2018-15180

Authors

S. Prabowo
sigidp@apps.ipb.ac.id (Primary Contact)
Ş. İnal
M. Garip
PrabowoS., İnal Ş., & GaripM. (2023). Dairy Cattle Body Width Principal Component and the Correlation Level to Milk Yields as An Option for Selection Approach. Tropical Animal Science Journal, 46(3), 269-279. https://doi.org/10.5398/tasj.2023.46.3.269

Article Details