Effect of Moringa oleifera Leaves Extract, Whey Protein, and Their Combination on Growth, Carcass and Meat Quality of Broiler Chickens
Abstract
Restriction of synthetic antioxidants and prohibition of antibiotic growth promoters (AGP) have had an impact on impairing the growth rate of broiler chickens, and hence the alternatives for these additives are urgently needed by broiler farmers. The present study aimed to investigate the effect of Moringa oleifera leaves extract (MOLE), whey protein or their combination on the growth, carcass and meat quality of broilers. A total of 336 broiler chicks were arranged into four groups, including T0 (basal diet with no additive), T1 (basal diet with 1% MOLE), T2 (basal diet with 1% whey protein powder) and T3 (basal diet with 0.5% MOLE and 0.5% whey protein powder). Body weight and feed intake were recorded weekly. Internal organs and meats were obtained on day 42. Results showed that MOLE impaired body weight, body weight gain and feed conversion ratio of broilers (p<0.05). MOLE, whey protein and their blend decreased the abdominal fat content of broilers (p<0.05). Whey increased the moisture content of breast meats (p<0.05). Water holding capacity (WHC) was higher in T2 than in the other breast meats (p<0.05). Among the groups, pH value was highest in T2 breast meat (p<0.05). The lightness values of breast meat were lower in T2 than in the other groups (p<0.05), while the lowest yellowness values were found in T2 breast meat (p<0.05). The WHC was higher in T1 thigh meat than in T2 and T3 (p<0.05). The T1 thigh meat showed higher pH than the T2 group (p<0.05). The T1 thigh meat showed higher redness values than the other groups (p<0.05). In conclusion, MOLE reduced broiler growth and abdominal fat deposition. Whey reduced fat deposition and improved the meat quality of broilers.
References
Afkhami, M., H. Kermanshashi, & R. M. Heravi. 2020. Evaluation of whey protein sources on performance, liver antioxidants, and immune responses of broiler chickens challenged with ethanol. J. Anim. Physiol. Anim. Nutr. 104:898-908. https://doi.org/10.1111/jpn.13327
Alabi, O. J., A. D. Malik, J. W. Ng’Ambi, P. Obaje, & B. K. Ojo. 2017. Effect of aqueous Moringa oleifera (Lam) leaf extracts on growth performance and carcass characteristics of hubbard broiler chicken. Rev. Bras. Cienc. Avic. 19:273-280. https://doi.org/10.1590/1806-9061-2016-0373
Alwaleed, S., E. Mickdam. A. Ibrahim, & A. Sayed. 2020. The effect of dried Moringa oleifera on growth performance, carcass characteristics and blood parameters of broiler chicken. Int. J. Vet. Sci. 3:87-99. https://doi.org/10.21608/svu.2020.20685.1038
Anthony, J. C., T. G. Anthony, S. R. Kimball, & L. S. Jefferson. 2001. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J. Nutr. 131:856S-860S. https://doi.org/10.1093/jn/131.3.856S
AOAC. 2007. Official Methods of Analysis of AOAC international. 18th ed. Washington: Association of Official Analytical Chemists.
Ashour, E. A., M. E. Abd. El-Hack, M. Alagawany, A. A. Swelum, A. O. Osman, I. M. Saadeldin, M. Abdel-Hamid, & E. O. S. Hussein. 2019. Use of whey protein concentration in broiler diets. J. Appl. Poult. Res. 28:1078-1088. https://doi.org/10.3382/japr/pfz070
Bolton, W. 1967. Poultry Nutrition. MAFF Bulletin No.174. HMSO, London.
Bortlik, K., F. Saucy, E. Duruz, M. Richele, P. Lambelet, M. Baur, & A. M. A. Pfeifer. 2009. Method for Increasing Bioavailability of Lipophilic Bioactive Compounds. United States Patent No. US 7.588.781 B2, September 15, 2009.
Carvalho, L. M. D., M. É. D. S. Oliveira, A. S. Freitas, A. C. S. Neto, E. I. Ida, M. Shimokomaki, & M. S. Madruga. 2018. Further evidence for the existence of broiler chicken PFN (pale, firm, non-exudative) and PSE (pale, soft, exudative) meat in brazilian commercial flocks. Food Sci. Technol. 38:704-710. https://doi.org/10.1590/fst.15617
Cui, Y-M., J. Wang, W. Lu, H-J. Zhang, S-G. Wu, & G. H. Qi. 2018. Effect of dietary supplementation with Moringa oleifera leaf on performance, meat quality, and oxidative stability of meat in broilers. Poult. Sci. 97:2836-2844. https://doi.org/10.3382/ps/pey122
Corrochano, A. R., V. Buckin, P. M. Kelly, & L. Giblin. 2018. Invited review: whey proteins as antioxidants and promoters of cellular antioxidant pathways. J. Dairy Sci. 101: 4747-4761. https://doi.org/10.3168/jds.2017-13618
Fouad, A. M. & H. K. El-Senousey. 2014. Nutritional factors affecting abdominal fat deposition in poultry: A review. Asian-Australas.. J. Anim. Sci. 27:1057-1068. https://doi.org/10.5713/ajas.2013.13702
Grau, R. & R. Hamm. 1953. Eine einfache methode zur bestimmung der wasserbindung im muskel. Naturwissenschaften 40:29-30. https://doi.org/10.1007/BF00595734
Hamilton, T. S. & L. E. Card. 1924. The utilization of lactose by the chicken. J. Agric. Res. 27:597-604.
Ibrahim, D., A. E. Metwally, & S. I. Khater. 2015. Supplementation of whey protein concentrates and creatine monohydrate to broiler diet: Effects on performance, molecular regulation of muscle building, carcass characteristics and oxidative status. Glob. Vet. 15:423-432.
Jamroz, D., A. Wiliczkiewicz, J. Skorupińska, J. Orda, J. Kuryszko, & H. Tschirch. 2009. Effect of sweet chestnut tannin (SCT) on the performance, microbial status of intestine and histological characteristics of intestine wall in chickens. Br. Poult. Sci. 50:687-699. https://doi.org/10.1080/00071660903191059
Mahfuz, S. & X. S. Piao. 2019 Application of moringa (Moringa oleifera) as natural feed supplement in poultry diets. Animals 9:431. https://doi.org/10.3390/ani9070431
Majewska, T., K. Pudyszak, K. Kozłowski, K. Bohdziewicz, & P. Matusevičius. 2009. Whey and lactic acid in broiler chickens nutrition. Veterinarija ir Zootechnika. 47:56-59.
Makita, C., L. Chimuka, P. Steenkamp, E. Cukrowska, & E. Madala. 2016. Comparative analyses of flavonoid content in Moringa oleifera and Moringa ovalifolia with the aid of UHPLC-qTOF-MS fingerprinting. S. Afr. J. Bot. 105:116-122. https://doi.org/10.1016/j.sajb.2015.12.007
Mickdam, E., S. Alwaleed, M. Madamy, & A. Sayed. 2022. The effect of Moringa oleifera leaves on chicken meat composition and meat quality. Int. J. Vet. Sci. 11:201-206. https://doi.org/10.47278/journal.ijvs/2021.094
Mir, N. A., A. Rafiq, F. Kumar, V. Singh, & V. Shukla. 2017. Determinants of broiler chicken meat quality and factor affecting them: A review. J. Food Sci. Technol. 54:2997-3009. https://doi.org/10.1007/s13197-017-2789-z
Mir, N. A., P. K. Tyagi, A. K. Biswas, P. K. Tyagi, A. B. Mandal, M. A. Wani, C. Deo, A. Biswas, & A. K. Verma. 2018. Performance and meat quality of broiler chicken fed a ration containing flaxseed meal and higher dietary lysine levels. J. Agric. Sci. 156:291-299. https://doi.org/10.1017/S0021859618000242
Moreno-Mendoza, Y., K. D. Lopez-Villareal, C. A. Hernandez-Martinez, L. E. Rodriguez-Tovar, A. C. Hernandez-Coronado, A. Soto-Dominguez, M. E. Hume, & G. Mende-Zamora. 2021. Effect of Moringa leaf and agave inulin on performance, intestinal morphology, and meat yield of broiler chicken. Poult. Sci. 100:738-745. https://doi.org/10.1016/j.psj.2020.11.058
Nawab, A., F. Ibtisham, G. Li, B. Kieser, J. Wu, W. Liu, Y. Zao, Y. Nawab, K. Li, M. Xiao, & L. An. 2018. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry. J. Therm. Biol. 78:131-139. https://doi.org/10.1016/j.jtherbio.2018.08.010
Ncube, S., T. E. Halimani, E. V. I. Chikosi, & P. T. Saidi. 2017. Effect of Acacia angustissima leaf meal on performance, yield of carcass components and meat quality of broilers. S. Afr. J. Anim. Sci. 48:271-283. https://doi.org/10.4314/sajas.v48i2.8
Nkukwana, T. T., V. Muchenje, E. Pieterse, P. J. Masika, T. P. Mabusela, L. C. Hoffman, & K. Dzama. 2014. Effect of Moringa oleifera leaf meal on growth performance, apparent digestibility, digestive organ size and carcass yield in broiler chickens. Livest. Sci. 161:139-146. https://doi.org/10.1016/j.livsci.2014.01.001
Pineda-Quiroga, C., A. Camarinha-Silva, D. Borda-Molina, R. Atxaerandio, R. Ruiz, & A. Garcia-Rodriguez. 2018. Feeding broiler with dry whey powder and whey protein concentrate affected productive performance, ileal digestibility of nutrient and cecal microbiota community. Animal 12:692-700. https://doi.org/10.1017/S1751731117002208
Santoso, U. & Sartini. 2001. Reduction of fat accumulation in broiler chickens by Sauropus Androgynus (Katuk) leaf meal supplementation. Anim. Biosci. 14:346-350. https://doi.org/10.5713/ajas.2001.346
Sugiharto, S. 2021. Combined use of probiotics and their other active ingredients in broiler production during free antibiotic period - an update review. Bulgarian Journal Agricultural Science 27:667-676.
Steel, R. G. D. & J. H. Torrie. 1997. Principles and Procedures of Statistics. McGraw-Hill Book Co. Inc. New York.
Tan, Z., B. Halter, D. Liu, E. R. Gilbert, & M. A. Cline. 2022. Dietary flavonoids as modulators of lipid metabolism in poultry. Front. Physiol. 13:863860. https://doi.org/10.3389/fphys.2022.863860
Tesfaye, E., G. Animut, M. Urge, & T. Dessie. 2013. Moringa oleifera leaf meal as an alternative protein feed ingredient in broiler ration. Int. J. Poult. Sci. 12:289-297. https://doi.org/10.3923/ijps.2013.289.297
Ullah, F., M. Tahir, S. Naz, N. A. Khan, & R. U. Khan. 2022. In vitro efficacy and ameliorating effect of Moringa oleifera on growth, carcass, stress and digestibility of nutrients in Escherichia coli-infected broilers. J. Appl. Anim. Res. 50:118-124. https://doi.org/10.1080/09712119.2022.2039156
Wahyuni, R., W. Wignyanto, S. Wijana, & S. Sucipto. 2020. Optimization of protein and tannin extraction in Moringa oleifera leaf as antioxidant source. Food Res. 4:2224–2232. https://doi.org/10.26656/fr.2017.4(6).293
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.