The Assessment of Environmental Impact of the Chicken Meat Agroindustry in Indonesia: Life Cycle Assessment (LCA) Perspective

S. Azmi, Suprihatin, N. S. Indrasti, M. Romli

Abstract

Chicken meat agroindustry is one of the industries that contribute to environmental impacts. The environmental impacts are due to the use of resources, energy, and waste along the chicken meat chain. This study aimed to evaluate the environmental impacts along the life cycle of the chicken meat chain from cradle-to-grave using a life cycle assessment (LCA) approach. The data inventory consisted of inputs and outputs from five sub-systems: feed production, broiler production on the farm, carcass production at the slaughterhouse, supplier distribution, and consumer use. The impact categories included global warming, acidification, and eutrophication. The process of impact calculation used the CML-IA (Centre of Environmental Science of Leiden University Impact Assessment) baseline method on the SimaPro software. The results showed that consuming 1 kg of fried chicken resulted in a global warming impact of 5.86 kg CO2 eq, acidification of 38.3 g SO2 eq, and eutrophication of 24.1 g PO43- eq. Feed production, litter, and energy usage were the most significant contributors to the environmental impacts. Improvement scenarios in reducing environmental impacts included reducing crude protein in feed, composting litter, installing inverters on refrigeration compressors, and electrical energy efficiency. The present study indicated the importance of environmental impact assessment on the entire chicken meat chain to improve environmental performance in the Indonesian chicken agroindustry.

References

Arrieta, E. M. & A. D. González. 2019. Energy and carbon footprints of chicken and pork from intensive production systems in Argentina. Sci. Total Environ. 673:20–28. https://doi.org/10.1016/j.scitotenv.2019.04.002
Arroyo, J., L. Fortun-Lamothe, A. Auvergne, J. P. Dubois, F. Lavigne, M. Bijja, & J. Aubin. 2013. The environmental influence of maize substitution by sorghum and diet presentation on goose foie gras production. J. Clean. Prod. 59:51–62. https://doi.org/10.1016/j.jclepro.2013.06.051
Azmi, S., T. Djatna, Suprihatin, & N. S. Indrasti. 2021. Analysis and design of life cycle assessment system of chicken meat based on digital business ecosystem. J. Teknol. Ind. Pertan. 31:164–175.
BPS [National Bureau of Statistics]. 2019. Broiler Chicken Production by Province. National Bureau of Statistics, Republic of Indonesia, Jakarta.
Cesari, V., M. Zucali, A. Sandrucci, A. Tamburini, L. Bava, & I. Toschi. 2017. Environmental impact assessment of an Italian vertically integrated broiler system through a life cycle approach. J. Clean. Prod. 143:904–911. https://doi.org/10.1016/j.jclepro.2016.12.030
Garcia-Launay, F., L. Dusart, S. Espagnol, S. Laisse-Redoux, D. Gaudré, B. Méda, & A. Wilfart. 2018. The multiobjective formulation is an effective method to reduce the environmental impacts of livestock feeds. Br. J. Nutr. 120:1298–1309. https://doi.org/10.1017/S0007114518002672
Giannenas, I., E. Bonos, V. Anestis, G. Filioussis, D. K. Papanastasiou, T. Bartzanas, N. Papaioannou, A. Tzora, & I. Skoufos. 2017. Effects of protease addition and replacement of soybean meal by corn gluten meal on the growth of broilers and the environmental performances of a broiler production system in Greece. PLoS One. 12:1–26. https://doi.org/10.1371/journal.pone.0169511
González-García, S., Z. Gomez-Fernández, A. C. Dias, G. Feijoo, M. T. Moreira, & L. Arroja. 2014. Life cycle assessment of broiler chicken production: A Portuguese case study. J. Clean. Prod. 74:125–134. https://doi.org/10.1016/j.jclepro.2014.03.067
Hafiz, M. I. M., Z. M. Zulfattah, N. A. Munajat, A. B. F. Sakinah, & H. M. Asyraf. 2017. Cleaner production implementation at chicken slaughtering plant. ARPN J. Eng. Appl. Sci. 12:4324–4328.
Haryati, T., M. H. Togatorop, A. P. Sinurat, T. Purwadaria, & Murtiyeni. 2006. Utilization of fermented coconut cake with Aspergillus niger in broiler feed. JITV. 11:182–190.
Indrasti, N. S., & A. M. Fauzi. 2009. Cleaner Production. IPB Press, Bogor.
IPCC [Intergovernmental Panel on Climate Change]. 2006. IPCC Guidelines for National Greenhouse Gas Inventories: Volume 2-Energy Chapter 2-Stasionary Combustion. IPCC, Washington, DC.
ISO [International Organization for Standardization]. 2006. ISO 14040:2006 Environmental Management-Life Cycle Assessment-Principles and Framework. ISO, Switzerland.
Kalhor, T., A. Rajabipour, A. Akram, & M. Sharifi. 2016. Environmental impact assessment of chicken meat production using life cycle assessment. Inf. Process. Agric. 3:262–271. https://doi.org/10.1016/j.inpa.2016.10.002
Kebreab, E., A. Liedke, D. Caro, S. Deimling, M. Binder, & M. Finkbeiner. 2016. Environmental impact of using specialty feed ingredients in swine and poultry production: A life cycle assessment. J. Anim. Sci. 94:2664–2681. https://doi.org/10.2527/jas.2015-9036
Kheiralipour, K., Z. Payandeh, & B. Khoshnevisan. 2017. Evaluation of environmental impacts in Turkey production system in Iran. Iran. J. Appl. Anim. Sci. 7:507–512.
Leinonen, I. & A. G. Williams. 2015. Effects of dietary protease on nitrogen emissions from broiler production: A holistic comparison using life cycle assessment. J. Sci. Food Agric. 95:3041–3046. https://doi.org/10.1002/jsfa.7202
Leinonen, I., A. G. Williams, J. Wiseman, J. Guy, & I. Kyriazakis. 2012. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Broiler production systems. Poult. Sci. 91:8–25. https://doi.org/10.3382/ps.2011-01634
Lima, N. D. S., I. A. Nääs, R. G. Garcia, & D. J. Moura. 2019. Environmental impact of Brazilian broiler production process: Evaluation using life cycle assessment. J. Clean. Prod. 237:117752. https://doi.org/10.1016/j.jclepro.2019.117752
López-Andrés, J. J., A. A. Aguilar-Lasserre, L. F. Morales-Mendoza, C. Azzaro-Pantel, J. R. Pérez-Gallardo, & J. O. Rico-Contreras. 2018. Environmental impact assessment of chicken meat production via an integrated methodology based on LCA, simulation, and genetic algorithms. J. Clean. Prod. 174:477–491. https://doi.org/10.1016/j.jclepro.2017.10.307
Martinelli, G., E. Vogel, M. Decian, M. J. U. S. Farinha, L. V. M. Bernardo, J. A. R. Borges, R. M. T. Gimenes, R. G. Garcia, & C. F. Ruviaro. 2020. Assessing the eco-efficiency of different poultry production systems: An approach using life cycle assessment and economic value added. Sustain. Prod. Consum. 24:181–193. https://doi.org/10.1016/j.spc.2020.07.007
Nurhayati, Marimin, T. Djatna, & I. G. Permana. 2016. Supply chain performance and value-added with the internalization of environmental aspect on the broiler supply chain. J. Teknol. Ind. Pertan. 26:311–320.
Pasaribu, T. 2018. Efforts to improve the quality of palm kernel meal through fermentation technology and the addition of enzymes for poultry. Wartazoa 28:119–128. https://doi.org/10.14334/wartazoa.v28i3.1820
Pelletier, N. 2008. Environmental performance in the US broiler poultry sector: Life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions. Agric. Syst. 98:67–73. https://doi.org/10.1016/j.agsy.2008.03.007
Pishgar-Komleh, S. H., A. Akram, A. Keyhani, & R. van Zelm. 2017. Life cycle energy use, costs, and greenhouse gas emission of broiler farms in different production systems in Iran—a case study of Alborz province. Environ. Sci. Pollut. Res. 24:16041–16049. https://doi.org/10.1007/s11356-017-9255-3
Ramedani, Z., L. Alimohammadian, K. Kheialipour, P. Delpisheh, & Z. Abbasi. 2019. Comparing energy state and environmental impacts in ostrich and chicken production systems. Environ. Sci. Pollut. Res. 26:28284–28293. https://doi.org/10.1007/s11356-019-05972-8
Silva, V. P., H. M. G. van der Werf, S. R. Soares, & M. S. Corson. 2014. Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach. J. Environ. Manage. 133:222–231. https://doi.org/10.1016/j.jenvman.2013.12.011
Skunca, D., I. Tomasevic, I. Nastasijevic, V. Tomovic, & I. Djekic. 2018. Life cycle assessment of the chicken meat chain. J. Clean. Prod. 184:440–450. https://doi.org/10.1016/j.jclepro.2018.02.274
Suffian, S. A., A. A. Sidek, T. Matsuto, M. H. Al Hazza, H. M. Yusof, & A. Z. Hashim. 2018. Greenhouse gas emission of broiler chicken production in Malaysia using life cycle assessment guidelines: A case study. Int. J. Eng. Mater. Manuf. 3:87–97. https://doi.org/10.26776/ijemm.03.02.2018.03
Tallentire, C. W., S. G. Mackenzie, & I. Kyriazakis. 2018. Can novel ingredients replace soybeans and reduce the environmental burdens of European livestock systems in the future? J. Clean. Prod. 187:338–347. https://doi.org/10.1016/j.jclepro.2018.03.212
Wiedemann, S. G., E. J. McGahan, & C. M. Murphy. 2017. Resource use and environmental impacts from Australian chicken meat production. J. Clean. Prod. 140:675–684. https://doi.org/10.1016/j.jclepro.2016.06.086

Authors

S. Azmi
silmiazmiazmi@apps.ipb.ac.id (Primary Contact)
Suprihatin
N. S. Indrasti
M. Romli
AzmiS., Suprihatin, IndrastiN. S., & RomliM. (2023). The Assessment of Environmental Impact of the Chicken Meat Agroindustry in Indonesia: Life Cycle Assessment (LCA) Perspective. Tropical Animal Science Journal, 46(2), 249-260. https://doi.org/10.5398/tasj.2023.46.2.249

Article Details