Methicillin Resistant Staphylococcus aureus (MRSA) Isolation and mecA Gene Detection from Milk and Farmer Hand Swab in Tulungagung, Indonesia
Abstract
Staphylococcus aureus is a harmful bacterium that often contaminates milk; hence it is believed to become a severe health risk for humans. S. aureus resistant to β‑lactam drugs can be termed methicillin resistant Staphylococcus aureus (MRSA). Dairy farms have a high incidence of MRSA infections due to the repeated use of the same medicines on dairy cows and the physical contact between farmers and cows during milking. This study looked for MRSA in dairy cow milk and farmer hand swabs in Tulungagung, Indonesia. Using oxacillin and cefoxitin diffusion disks, phenotypic detection approaches were evaluated, then transferred to the Oxacillin Resistance Screening Agar Base (ORSAB) test and genotypically verified using PCR to find the mecA gene encoding MRSA. One hundred ten dairy cow milk samples and 45 farmer's hand swabs were collected from Tulungagung, East Java, Indonesia. Mannitol salt agar (MSA) was used for cultivation and purification. The disk-diffusion test used oxacillin and cefoxitin to identify S. aureus resistance. Oxacillin and cefoxitin-resistant S. aureus isolates were tested for MRSA using ORSAB. In addition, MRSA isolates were PCR-tested for the mecA gene. S. aureus was found in 110 (70.97%) of 155 isolates. Of the total 110 isolates of S. aureus, 16 (14.54%) and 39 (35.45%) were known to be resistant to Cefoxitin and Oxacillin, respectively. When tested with ORSAB, 23 isolates from 55 resistant isolates showed positive results for MRSA. Dairy milk was the source of most MRSA which is 15 isolates, while hand swabs only carried 8 isolates. However, PCR analysis only found mecA gene in two isolates. According to this study, many MRSA isolates were found from dairy farms in Tulungagung, Indonesia, but only a few have the mecA gene.
References
Anjum, M. F., F. Marco-Jimenez, D. Duncan, C. Marín, R. P. Smith, & S. J. Evans. 2019. Livestock-associated methicillin-resistant Staphylococcus aureus from animals and animal products in the UK. Front. Microbiol. 10:2136. https://doi.org/10.3389/fmicb.2019.02136
Ansharieta, R., M. H. Effendi, & H. Plumeriastuti. 2021. Genetic identification of shiga toxin encoding gene from cases of multidrug resistance (MDR) Escherichia coli isolated from raw milk. Trop. Anim. Sci. J. 44:10-15. https://doi.org/10.5398/tasj.2021.44.1.10
Bhawini, A., P. Pandey, A. P. Dubey, A. Zehra, G. Nath, & M. N. Mishra. 2019. Relq mediates the expression of β-lactam resistance in methicillin-resistant Staphylococcus aureus. Front. Microbiol. 10:339. https://doi.org/10.3389/fmicb.2019.00339
Bhutia, K. O., T. S. Singh, S. Biswas, & L. Adhikari. 2012. Evaluation of phenotypic with genotypic methods for species identification and detection of methicillin resistant in Staphylococcus aureus. Int. J. Appl. Basic Med. Res. 2:84-91. https://doi.org/10.4103/2229-516X.106348
Bonjean, M., E. Hodille, O. Dumitrescu, C. Dupieux, C. N. Mongo, C. Allam, M. Beghin, M. Paris, O. Borrel, H. Chardon, F. Laurent, J. P. Rasigade, & G. Lina. 2016. Disk diffusion testing for detection of methicillin-resistant staphylococci: Does moxalactam improve upon cefoxitin?. J. Clin. Microbiol. 54: 2905-2909. https://doi.org/10.1128/JCM.01195-16
Catalán, P., E. Wood, J. M. A. Blair, I. Gudelj, J. R. Iredell, & R. E. Beardmore. 2022. Seeking patterns of antibiotic resistance in ATLAS, an open, raw MIC database with patient metadata. Nat. Commun. 13:2917. https://doi.org/10.1038/s41467-022-30635-7
Chai, M. H., T. A. M. Faiq, S. M. Z. Ariffin, Z. Suhaili, M. Z. Sukiman, & M. F. Ghazali. 2020. Prevalence of methicillin resistant Staphylococcus aureus in raw goat milks from selected farms in Terengganu, Malaysia. Trop. Anim. Sci. J. 43: 64-69. https://doi.org/10.5398/tasj.2020.43.1.64
Da Silva, A. C., M. X. Rodrigues, & N. C. C. Silva. 2020. Methicillin-resistant Staphylococcus aureus in food and the prevalence in Brazil: A review. Braz. J. Microbiol. 51:347-356. https://doi.org/10.1007/s42770-019-00168-1
Dittmann, K. K., L. T. Chaul, S. H. I. Lee, C. H. Corassin, C. A. F. de Oliveira, E. C. P. de Martinis, V. F. Alves, L. Gram, & V. Oxaran. 2017. Staphylococcus aureus in some brazilian dairy industries: Changes of contamination and diversity. Front. Microbiol. 8:2049. https://doi.org/10.3389/fmicb.2017.02049
Effendi, M. H., M. A. M. Hisyam, P. Hastutiek, & W. Tyasningsih. 2019. Detection of coagulase gene in Staphylococcus aureus from several dairy farms in East Java, Indonesia, by polymerase chain reaction. Vet. World. 12:68-71. https://doi.org/10.14202/vetworld.2019.68-71
Effendi, M. H., A. Oktavianto, & P. Hastutiek. 2018. Tetracycline resistance gene in Streptococcus agalactiae isolated from bovine subclinical mastitis in Surabaya, Indonesia. Philippine Journal Veterinary Medicine 55:115-120.
Fergestad, M. E., G. A. Stamsås, D. A. Morales, Z. Salehian, Y. Wasteson, & M. Kjos. 2020. Penicillin-binding protein PBP2a provides variable levels of protection toward different β-lactams in Staphylococcus aureus RN4220. Microbiology Open 9:e1057. https://doi.org/10.1002/mbo3.1057
Fishovitz, J., J. A. Hermoso, M. Chang, & S. Mobashery. 2014. Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. International Union Biochemistry Molecular BiologyLife 66:572-577. https://doi.org/10.1002/iub.1289
Foster, T. J. 2017. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev. 41:430-449. https://doi.org/10.1093/femsre/fux007
Gebremedhin, E. Z., A. B. Ararso, B. M. Borana, K. A. Kelbesa, N. D. Tadese, L. M. Marami, & E. J. Sarba. 2022. Isolation and identification of Staphylococcus aureus from milk and milk products, associated factors for contamination, and their antibiogram in holeta, central Ethiopia. Vet. Med. Int. 2022:6544705. https://doi.org/10.1155/2022/6544705
Girmay, W., G. Gugsa, H. Taddele, Y. Tsegaye, N. Awol, M. Ahmed, & A. Feleke. 2020. Isolation and identification of methicillin-resistant Staphylococcus aureus (MRSA) from milk in shire dairy farms, Tigray, Ethiopia. Vet. Med. Int. 2020:8833973. https://doi.org/10.1155/2020/8833973
Gopal, S. & K. C. Divya. 2017. Can methicillin-resistant Staphylococcus aureus prevalence from dairy cows in India act as potential risk for community-associated infections?: A review. Vet. World. 10:311-318. https://doi.org/10.14202/vetworld.2017.311-318
Green, B. N., C. D. Johnson, J. T. Egan, M. Rosenthal, E. A. Griffith, & M. W. Evans. 2012. Methicillin-resistant Staphylococcus aureus: An overview for manual therapists. J. Chiropr. Med. 11:64-76. https://doi.org/10.1016/j.jcm.2011.12.001
Guo, Y., G. Song, M. Sun, J. Wang, & Y. Wang. 2020. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 10:107. https://doi.org/10.3389/fcimb.2020.00107
Hanssen, A. M., B. Kindlun, N. C. Stenklev, A. S. Furberg, S. Fismen, R. S. Olsen, M. Johannessen, & J. U. E. Sollid. 2017. Localization of Staphylococcus aureus in tissue from the nasal vestibule in healthy carriers. BMC Microbiology. 17:89. https://doi.org/10.1186/s12866-017-0997-3
Hassani, S., M. H. Moosavy, S. N. Gharajalar, S. A. Khatibi, A. Hajibemani, & Z. Barabadi. 2022. High prevalence of antibiotic resistance in pathogenic foodborne bacteria isolated from bovine milk. Sci. Rep. 12:3878. https://doi.org/10.1038/s41598-022-07845-6
Jiang, H., J. Bao, J. Liu, Y. Chen, C. Feng, X. Li, S. Huang, & Q. Chen. 2021. Development of a quantitative PCR method for specific and quantitative detection of enterocytospora artemiae, a microsporidian parasite of Chinese grass shrimp (Palaemonetes sinensis). Front. Mar. Sci. 8:730569. https://doi.org/10.3389/fmars.2021.730569
Keman, D. & F. Soyer. 2019. Antibiotic-resistant Staphylococcus aureus does not develop resistance to vanillic acid and 2-hydroxycinnamic acid after continuous exposure in vitro. ACS Omega. 4:15393-15400. https://doi.org/10.1021/acsomega.9b01336
Khairullah, A. R., S. C. Ramandinianto, & M. H. Effendi. 2020a. A review of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) on bovine mastitis. Syst. Rev. Pharm. 11:172-183.
Khairullah, A. R., S. A. Sudjarwo, M. H. Effendi, N. Harijani, W. Tyasningsih, J. Rahmahani, D. A. Permatasari, S. C. Ramandinianto, A. Widodo, & K. H. P. Riwu. 2020b. A review of methicillin-resistant Staphylococcus aureus (MRSA) on milk and milk products: Public health importance. Syst. Rev. Pharm. 11:59-69.
Khairullah, A. R., S. A. Sudjarwo, M. H. Effendi, S. C. Ramandininto, M. A. Gelolodo, A. Widodo, K. H. P. Riwu, D. A. Kurniawati, & S. Rehman. 2022a. Profile of multidrug resistance and methicillin-resistant Staphylococcus aureus (MRSA) on dairy cows and risk factors from farmer. Biodiversitas 23:2853-2858. https://doi.org/10.13057/biodiv/d230610.
Khairullah, A. R., S. Rehman, S. A. Sudjarwo, M. H. Effendi, S. C. Ramandininto, M. A. Gelolodo, A. Widodo, K. H. P. Riwu, & D. A. Kurniawati. 2022b. Detection of mecA gene and methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and risk factors from farms in Probolinggo, Indonesia. F1000Res. 11:722. https://doi.org/10.12688/f1000research.122225.1
Kou, X., H. Cai, S. Huang, Y. Ni, B. Luo, H. Qian, H. Ji, & X. Wang. 2021. Prevalence and characteristics of Staphylococcus aureus isolated from retail raw milk in northern Xinjiang, China. Front. Microbiol. 12:705947. https://doi.org/10.3389/fmicb.2021.705947
Koupahi, H., S. J. Honarmand, & M. Rahbar. 2016. Evaluation of different phenotypic and genotypic methods for detection of methicillin resistant Staphylococcus aureus (MRSA). Iran J. Pathol. 11:370-376.
Lemma, F., H. Alemayehu, A. Stringer, & T. Eguale. 2021. Prevalence and antimicrobial susceptibility profile of Staphylococcus aureus in milk and traditionally processed dairy products in addis ababa, Ethiopia. Biomed. Res. Int. 2021:5576873. https://doi.org/10.1155/2021/5576873
Mariyam, N. F. & P. Gopinath. 2016. Comparative study on detection of MRSA using oxacillin agar screening method, cefoxitin disc diffusion method and mecA gene by PCR among clinical isolates of Staphylococcus aureus. Res. J. Pharm. Technol. 9:1317-1320. https://doi.org/10.5958/0974-360X.2016.00250.X
Miragaia, M. 2018. Factors contributing to the evolution of mecA-mediated β-lactam resistance in Staphylococci: Update and new insights from whole genome sequencing (WGS). Front. Microbiol. 9:2723. https://doi.org/10.3389/fmicb.2018.02723
Moraes, G. F. Q., L. V. Cordeiro, & F. P. A. Júnior. 2021. Main laboratory methods used for the isolation and identification of Staphylococcus spp. Revista Colombiana Ciencias Químico Farmacéuticas 50:5-28.
Müller, S., A. J. Wolf, I. D. Iliev, B. L. Berg, D. M. Underhill, & G. Y. Liu. 2015. Poorly cross-linked peptidoglycan in MRSA due to mecA induction activates the inflammasome and exacerbates immunopathology. Cell Host Microbe 18:604-612. https://doi.org/10.1016/j.chom.2015.10.011
Mustapha, M., Y. M. Bukar-Kolo, Y. A. Geidam, & I. A. Gulani . 2016. Phenotypic and genotypic detection of methicillin-resistant Staphylococcus aureus in hunting dogs in Maiduguri metropolitan, Borno state, Nigeria. Vet. World. 9:501-506. https://doi.org/10.14202/vetworld.2016.501-506
Nam, L. V., D. Quyet, P. N. Hung, T. V. Tien, K. C. Thanh, Q. A. Dung, D. D. Linh, H. T. Tan, N. D. Bac, T. C. Dinh, & D. C. Pho. 2019. Antibiotic resistance profile and methicillin-resistant encoding genes of Staphylococcus aureus strains isolated from bloodstream infection patients in Northern Vietnam. Open Access Maced. J. Med. Sci. 7:4406-4410. https://doi.org/10.3889/oamjms.2019.871
Panda, R. K., A. Mahapatra, B. Mallick, & N. Chayani. 2016. Evaluation of genotypic and phenotypic methods for detection of methicillin resistant Staphylococcus aureus in a tertiary care hospital of Eastern Odisha. J. Clin. Diagn. Res. 10:DC19-DC21. https://doi.org/10.7860/JCDR/2016/17476.7278
Parmawati, R. 2019. Sustainable management and rural agropolitan development in Sendang village of Tulungagung East Java a multidimensional analysis of sustainability. Jurnal Ilmiah Sosial Humaniora 9:239-253. https://doi.org/10.22146/kawistara.40437
Pourmand, M. R., S. Hassanzadeh, R. Mashhadi, & E. Askari. 2014. Comparison of four diagnostic methods for detection of methicillin resistant Staphylococcus aureus. Iran J. Microbiol. 6:341-344.
Pournajaf, A., A. Ardebili, L. Goudarzi, M. Khodabandeh, T. Narimani, & H. Abbaszadeh. 2014. PCR-based identification of methicillin-resistant Staphylococcus aureus strains and their antibiotic resistance profiles. Asian Pac. J. Trop. Biomed. 4:S293-S297. https://doi.org/10.12980/APJTB.4.2014C423
Ramandinianto, S. C., A. R. Khairullah, & M. H. Effendi. 2020. MecA gene and methicillin resistant Staphylococcus aureus (MRSA) isolated from dairy farms in East Java, Indonesia. Biodiversitas 21:3562-3568 https://doi.org/10.13057/biodiv/d210819.
Reddy, P. N., K. Srirama, & V. R. Dirisala. 2017. An update on clinical burden, diagnostic tools, and therapeutic options of Staphylococcus aureus. Infect. Dis. (Auckl) 10:1179916117703999. https://doi.org/10.1177/1179916117703999
Regasa, S., S. Mengistu, & A. Abraha. 2019. Milk safety assessment, isolation, and antimicrobial susceptibility profile of Staphylococcus aureus in selected dairy farms of Mukaturi and Sululta Town, Oromia Region, Ethiopia. Vet. Med. Int. 2019: 3063185. https://doi.org/10.1155/2019/3063185
Sahai, S., S. Prasad, & Chauhan. 2014. Comparative evaluation of oxacillin and cefoxitin disk diffusion method in detection of methicillin-resistant Staphylococcus aureus (MRSA) isolates from a tertiary care hospital in North India. Int. J. Sci. Study 2:125-128.
Schechner, V., E. Temkin, S. Harbarth, Y. Carmeli, & M. J. Schwaber. 2013. Epidemiological interpretation of studies examining the effect of antibiotic usage on resistance. Clin. Microbiol. Rev. 26:289-307. https://doi.org/10.1128/CMR.00001-13
Schnitt, A. & B. A. Tenhagen. 2020. Risk factors for the occurrence of methicillin-resistant Staphylococcus aureus in dairy herds: An update. Foodborne Pathog. Dis. 17:585-596. https://doi.org/10.1089/fpd.2019.2638
Sultana, H., H. Sattar, S. Tarafder, J. N. Sarker, T. H. Bhuiyan, M. Rahman, & A. Yusuf. 2019. Comparison of cefoxitin disc diffusion test, oxacillin disc diffusion test, oxacillin screen agar and pcr for meca gene for detection of methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Pharm. Med. Res. 6:136-139. https://doi.org/10.12691/ajidm-6-1-4
Tegegne, B. & S. Tesfaye. 2017. Bacteriological milk quality: Possible hygienic factors and the role of Staphylococcus aureus in raw bovine milk in and around Gondar, Ethiopia. Int. J. Food Contam. 4:1. https://doi.org/10.1186/s40550-016-0046-2
Tibebu, L., Y. Belete, E. Tigabu, & W. Tsegaye. 2021. Prevalence of Staphylococcus aureus, methicillin-resistant Staphylococcus aureus and potential risk factors in selected dairy farms at the interface of animal and human in Bishoftu, Ethiopia. Vet. Med. (Auckl). 12:241-251. https://doi.org/10.2147/VMRR.S331968
Tigabu, E., D. Asrat, T. Kassa, T. Sinmegn, B. Molla, & W. Gebreyes. 2015. Assessment of risk factors in milk contamination with Staphylococcus aureus in urban and peri-urban small-holder dairy farming in Central Ethiopia. Zoonoses Public Health 62:637-643. https://doi.org/10.1111/zph.12199
Tyasningsih, W., M. H. Effendi, B. Budiarto, & I. R. Syahputra. 2019. Antibiotic resistance to Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) isolated from dairy farms in Surabaya, Indonesia. Indian Vet. J. 96:27-31.
Uehara, Y. 2022. Current status of staphylococcal cassette chromosome mec (SCCmec). Antibiotics (Basel). 11:86. https://doi.org/10.3390/antibiotics11010086
Van den Brom, R., A. de Jong, E. van Engelen, A. Heuvelink, & P. Vellema. 2020. Zoonotic risks of pathogens from sheep and their milk borne transmission. Small Rumin. Res. 189:106123. https://doi.org/10.1016/j.smallrumres.2020.106123
Wang, W., X. Lin, T. Jiang, Z. Peng, J. Xu, L. Yi, F. Li, S. Fanning, & Z. Baloch. 2018. Prevalence and characterization of Staphylococcus aureus cultured from raw milk taken from dairy cows with mastitis in Beijing, China. Front. Microbiol. 9:1123. https://doi.org/10.3389/fmicb.2018.01123
Widianingrum, D. C., H. Khasanah, & H. S. Addy. 2022. Presence of antibiotic-resistant in staphylococcal subclinical mastitis in several regencies of East Java, Indonesia. Trop. Anim. Sci. J. 45:91-97. https://doi.org/10.5398/tasj.2022.45.1.91
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.