Performance, Carcass Characteristics, and Meat Quality of Broiler Chickens Fed β-Mannanase and Two Levels of Energy
Abstract
This study aimed at evaluating the response to supplementation of β-Mannanase with two levels of energy on performance, carcass yield, and meat quality of 1600 1-d-old straight run Indian River broilers which were randomly allotted to 4 dietary treatments (10 replicates/treatment, 40 chicks per replicate) in a 35-d feeding trial. The trial consisted of 2 phases, starter (0 to 14 d) and grower (15 to 35 d). The experiment was designed in a 2 x 2 factorial arrangement. The first factor was the energy level of the ration consisted of 2 levels, i.e., a low energy level with 2.900 kcal ME/kg during the starter phase and 3.000 kcal ME/kg during the grower phase; and a normal energy level with 3020 kcal ME/kg during starter phase and 3120 kcal ME/kg during grower phase, with variations based on the content of feed grade soybean oil. The second factor was the level of β-Mannanase in the diet consisted of 2 levels, i.e., ration without β-Mannanase (BETAMINUS: 0%) and ration with 0.05% β-Mannanase (BETAPLUS: 0.05%). Feeding low ME increased feed intake (p<0.05) during the overall phase (0 to 35 d) and normal ME decreased (p<0.05) feed conversion ratio during the starter and overall phases. Birds fed normal ME exhibited higher (p<0.05) hot and cold carcass weights. There was a significant interaction between dietary ME level and β-Mannanase to breast meat pH (p= 0.006), meat redness (a*) (p= 0.01), and meat yellowness (b*) (p= 0.0001). In conclusion, the results of enzyme supplementation did not elicit any noticeable response pertaining to productive performance, carcass characteristics, or meat quality (except pH and meat color). Moreover, feeding low dietary ME and β-Mannanase did not compromise overall broiler chickens performance.
References
Alqhtani, A. H., A. R. Al Sulaiman, S. A. Alharthi, & A. M. Abudabos. 2022. Effect of exogenous enzymes cocktail on performance, carcass traits, biochemical metabolites, intestinal morphology, and nutrient digestibility of broilers fed normal and low-energy corn–soybean diets. Animals 12:1094. https://doi.org/10.3390/ani12091094
Abouelezz, K. F. M., Y. Wang, W. Wang, X. Lin, L. Li, Q. Fan, & S. Jiang. 2019. Impacts of graded levels of metabolizable energy on growth performance and carcass characteristics of slow-growing yellow-feathered male chickens. Animals 9:461. https://doi.org/10.3390/ani9070461
Alhammd, Z. 2020. Broiler chain value: Socioeconomic plan for commercial broiler farm in Jordan. Asian Journal Advanced Research Reports 10:36-42. https://doi.org/10.9734/ajarr/2020/v10i230240
Alierzalua, K., J. Hesarib, Z. Nematic, P. E. S. Munekatad, F. J. Barbae, & J. M. Lorenzod. 2019. Combined effect of natural antioxidants and antimicrobial compounds during refrigerated storage of nitritite-free franfuter-type sausage. Food Res. Int. 120:839-850. https://doi.org/10.1016/j.foodres.2018.11.048
Arsenault, R. J., J. T. Lee, R. Latham, B. Cater, & M. H. Kogut. 2017. Changes in immune and metabolic gut response in broilers fed β-mannanase in β-mannan-containing diets. Poult. Sci. 96:4307-4316. https://doi.org/10.3382/ps/pex246
Attia, G., A. E. Metwally, R. R. Beheiry, & M. Farhat. 2021. Effect multi carbohydrase supplementation to diets varying in metabolisable energy level on the performance, carcass traits, intestinal morphology, and nutrient digestibility in broiler chickens. Ital. J. Anim. Sci. 20:215-225. https://doi.org/10.1080/1828051X.2021.1875337
Azarfar, A. 2013. Effect of hemicell enzyme on the performance, growth parameter, some blood factors, and ileal digestibility of broiler chickens fed corn/soybean based-diets. Journal Cell Animal Biology 7:85-91. https://doi.org/10.5897/JCAB2013.0373
Balasubramanian, B., S. L. Ingale, J. Hong-Park, J. C. Rathi, S. Shanmugam, I. H. Kim. 2018. Inclusion of dietary β-mannanase improves performance and ileal digestibility and reduces ilealdigesta viscosity of broilers fed corn-soybean meal based diets. Poult. Sci. 97:3097-3101. https://doi.org/10.3382/ps/pey157
Barbour, G. W., M. T. Farran, N. N. Usaryan, A. H. Darwish, M. G. Uwayjan, & V. M. Ashkarian. 2006. Effect of soybean oil supplementation to low metabolizable energy diets on production parameters of broiler chickens. J. Appl. Poult. Res. 15:190-197. https://doi.org/10.1093/japr/15.2.190
Barros, V. R. M. S., G. R. Q. Lana, S. R. V. Lana, F. S. A. Cunha, & J. V. E. Neto. 2015. β-mannanase and mannan oligosaccharides in broiler chicken feed. Cienc. Rural 45:111-117. https://doi.org/10.1590/0103-8478cr20131544
Cho, J. H. & I. H. Kim. 2013. Effects of beta-mannanase supplementation in combination with low and high energy dense diets for growing and finishing broilers. Livest. Sci. 154:137-143. https://doi.org/10.1016/j.livsci.2013.03.004
Ferreira, H. C., M. I. Hannas, F. T. Albino, H. S. Rostagno, R. Neme, B. D. Faria, M. L. Xavier, & L. N. Renno. 2016. Effect of the addition of β-mannanase on the performance, metabolizable energy, amino acid digestibility coefficients, and immune functions of broilers fed different nutritional levels. Poult. Sci. 95:1848-1857. https://doi.org/10.3382/ps/pew076
Habib, A. B., A. A. Mohamed, A. M. Elttifi, E. S. Abushulukh, & A. A. Abubaker. 2016. Effects of feed supplemented with xylanase enzyme on performance and carcass characteristics and meat quality of broiler chicks. Journal Applied Veterinary Sciences 1:15-20. https://doi.org/10.21608/javs.2016.61822
Hosseindoust, A., S. H. Lee, W. G. Nho, Y. H. Song, J. S. Shin, S. L. Ingale, P. C. Rathi, J. W. Choi, B. J. Chae, & J. S. Kim. 2019. A dose response study to evaluate the effects of pH-stable β-mannanase derived from Trichoderma citrinoviride on growth performance, nutrient retention, and intestinal morphology in broiler chickens. Ital. J. Anim. Sci. 18:147154. https://doi.org/10.1080/1828051X.2018.1500872
Hu, Y. D., D. Lan, Y. Zhu, H. Z. Pang, X. P. Mu, & X. F. Hu. 2018. Effects of diets with different energy and lipase levels on performance, digestibility, and carcass traits in broilers. Asian-Australas J. Anim. Sci. 31:1275-1284. https://doi.org/10.5713/ajas.17.0755
Hussein, E. O. S., G. M. Suliman, A. M. Abudabos, A. N. Alowaimer, S. H. Ahmed, M. E.Abd. El-Hack, M. Alagawany, A. A. Swelum, A. Tinelli, V. Tufarnelli, & V. Landadio. 2019. Effects of low energy and enzyme-supplemented diet on broiler chicken growth, carcass traits and meat quality. Arch. Anim. Breed. 62:297-304. https://doi.org/10.5194/aab-62-297-2019
Hussein, E. O. S., G. M. Suliman, A. N. Alowaimer, S. H. Ahmed, M. E. Abd. El-Hack, A. E. Taha, & A. A. Swelum. 2020. Growth, carcass characteristics and meat quality attributes of broilers fed low-energy diet supplemented with a multienzyme preparation. Poult. Sci. 99:1988-1994. https://doi.org/10.1016/j.psj.2019.09.007
Ibuki, M., Y. Yoshimoto, H. Yamasaki, K. Honda, K. Fukui, H. Yonemoto, S. Hasegawa, & H. Kamisoyama. 2013. Effect of dietary β-1,4,-mannibiose in the growth of growing broiler chicks. J. Poult. Sci. 50:120-125. https://doi.org/10.2141/jpsa.0120138
Kim, M. C., J. H. Kim, F. M. Pitargue, D. Y. Koo, S. H. Choi, & D. Y. Kil. 2017. Effect of dietary β-mannanase on productive performance, egg quality, and utilization of dietary energy and nutrients in aged laying hens raised under hot climates. Asian-Australas J. Anim. Sci. 30:1450-1455. https://doi.org/10.5713/ajas.17.0269
Klein, J., M. Williams, J. Brown, S. Rao, & J. T. Lee. 2015. Effects of dietary inclusion of a cocktail NSPase and β-mannanase separately and in combination with low energy diets on broiler performance and processing parameters. J. Appl. Poult. Res. 24:489-501. https://doi.org/10.3382/japr/pfv055
Kong, C., J. H. Lee, & O. Adeola. 2011. Supplementation of β-mannanase to starter and grower diets for broilers. Can. J. Anim. Sci. 91:389-397. https://doi.org/10.4141/cjas10066
Latham, R. E., K. W. Smith, K. Stringfellow, S. Clemente, R. Brister, & J. T. Lee. 2016. Effects of β-mannanase inclusion on growth performance, ileal digestible energy, and intestinal viscosity of male broilers fed a reduced-energy diet. J. Appl. Poult. Res. 25:40-47. https://doi.org/10.3382/japr/pfv059
Lee, B. B., T. S. Yang, D. Goo, H. S. Choi, F. M. Pitargue, H. Jung, & D. Y. Kil. 2018. Effect of dietary β-mannanase supplementation on the additivity of true metabolizable energy values for broiler diets. Asian-Ausralas J. Anim. Sci. 31:564-568. https://doi.org/10.5713/ajas.17.0785
Mir, N. A., A. Kumar, F. Singh, & V. Shukla. 2017. Determinants of broiler chicken meat quality and factors affecting them: A review: J. Food. Sci. Technol. 54:2997-3004. https://doi.org/10.1007/s13197-017-2789-z
Mohammadigheisar, M., H. M. Kim, & I. H. Kim. 2018. Effects of inclusion of lysolecithin and multi-enzyme in low energy diets of broiler chickens. J. Appl. Anim. Res. 46:1198-1201. https://doi.org/10.1080/09712119.2018.1484358
Mohammadigheisar, M., V. L. Shouldice, B. Balamuralikrishnan, & I. H. Kim. 2021. Effect of dietary supplementation of β-mannanase on growth performance, carcass characteristics, excreta microflora, blood constituents, and nutrient ileal digestibility in broiler chickens. Anim. Biosci. 34:1324-1349. https://doi.org/10.5713/ab.20.0355
National Research Council (NRC). 1994. Nutrient Requirements of Poultry. National Research Council, National Academy of Science, Washington, DC. Pp.
Obeidat, B. S., K. Z. Mahmoud, J. A. Maswadeh, & E. Y. Bsoul. 2016. Effects of feeding Atriplex halimus L. on growth performance and carcass characteristics of fattening awassi lambs. Small Rumin. Res. 137:65-70 https://doi.org/10.1016/j.smallrumres.2016.03.007
Rehman, Z. U., T. Aziz, S. S. Bhatti, G. Ahmad, J. Kamran, S. Umar, C. Meng, & C. Ding. 2016. Effect of β-mannanase on the performance and digestibility of broilers. Asian J. Anim. Vet. Adv. 11:393-398. https://doi.org/10.3923/ajava.2016.393.398
Saeed, M., T. Ayasan, M. Algawany, M. E. A. El-Hack, M. A. Abdel-Latif, & M. K. Patra. 2019. The role of β-mannanase (hemicell) in improving poultry, productivity, health, and environment. Rev. Bras. Cienc. Avic. 21:18. https://doi.org/10.1590/1806-9061-2019-1001
SAS Institute. 2013.SAS/STATS User’s Guide, Release 9.4.4. SAS Institute, Cary, NC, USA.
Scapini, L. B., A. Rorig, A. Ferraini, L. M. Fulber, M. Canavese, & A. M. Silva. 2018. Nutritional evaluation of soybean hulls with or without β-mannanase supplement on performance, intestinal morphometrics, and carcass yield of broiler chickens. Rev. Bras. Cienc. Avic. 20:633-642. https://doi.org/10.1590/1806-9061-2017-0581
Shastak, Y., P. Ader, D. Feuerstein, R. Ruehle, & M. Matuschek. 2015. β-Mannan and mannanase in poultry nutrition. Worlds Poult. Sci. J. 71:161-173. https://doi.org/10.1017/S0043933915000136
Slominski, B. A. 2011. Recent advances in research on enzymes for poultry diets. Poult. Sci. 90:2013-2023. https://doi.org/10.3382/ps.2011-01372
Uhlirova, L., E. Tumova, D. Chodova, J. Vlckova, M. Ketta, Z. Volek, & V. Skrivanova. 2018. The effect of age, genotype, and sex on carcass traits, meat quality and sensory attributes in geese. Asian-Australas J. Anim. Sci. 31:421-428. https://doi.org/10.5713/ajas.17.0197
Williams, M. P., B. Brown, S. Rao, & J. T. Lee. 2014. Evaluation of beta-mannanase and NSP-degrading enzyme inclusion separately or intermittently in reduced energy diets fed to male broilers on performance parameters and carcass yield. J. Appl. Poult. Res. 23:715-723. https://doi.org/10.3382/japr.2014-01008
Zakaria, H. A. H., M. A. R. Jalal, & M. A. AbuIshmais. 2010. The influence of supplemental multi-enzyme feed additive on the performance, carcass characteristics and meat quality traits of broiler chickens. Int. J. Poult. Sci. 9:126-133. https://doi.org/10.3923/ijps.2010.126.133
Zou, X. T., P. Zheng, K. Zhang, X. Ding, & S. Bai. 2013. Effects of exogenous enzymes and dietary energy on performance and digestive physiology of broilers. J. Anim. Sci. Biotechnol. 4:14. https://doi.org/10.1186/2049-1891-4-14
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.