Antioxidant Enzymes and Growth of Broiler Fed Microparticle Protein Diet with Inulin or Lactobacillus acidophillus Supplementation
Abstract
The effect of dahlia tuber extract or Lactobacillus acidophilus inclusion on intestinal physiology, antioxidant enzymes, and growth performance of broiler chicken given a microparticle protein-composed diet was evaluated in the present study. Three dietary treatments were applied, Control: 21% intact protein diet without additive, MP-DTE: 21% microparticle protein diet + 1.2% dahlia tuber extract as inulin source, and MP-La: 21% microparticle protein diet + 1.2 mL L. acidophilus (1 mL L. acidophilus/La equal to 108 cfu). Microparticle proteins were obtained from common protein source ingredients for poultry, fish meal, and soybean meal. A completely randomized design was assigned with 3 treatments and replicated 8 times, 10 broilers in each replication. Experimental animals were 240 broilers for treatment and 10 birds for endogenous correction. Digestibility of protein and essential amino acids, villi height, intestinal bacterial counts (LAB and Eschericia coli), short chain fatty acids/SCFA (acetate, propionate, and butyrate), antioxidant enzymes (GSH-Px and SOD), and growth performances (meat protein/MPM and fat mass/MFM, feed consumption, body weight gain/BWG, and feed conversion ratio/FCR) were variables measured. Data were statistically processed based on analysis of variance and continued to the Duncan test (p<0.05). Supplementation of dahlia inulin extract or L. acidophilus to the micropaticle protein diet significantly (p<0.05) increased N retention, villi height, LAB population, SCFA, antioxidant enzymes, and improved MPM and BWG, but decreased E. coli count, MFM, and FCR. However, feed consumption was not affected by any treatment. It can be concluded that L. acidophilus supplementation to the microparticle protein diet (MP-La) improves antioxidant enzymes, and growth performance with high meat protein and low fat mass.
References
Abdurrahman, Z. H., Y. B. Pramono, & N. Suthama. 2016b. Meat characteristic of crossbred local chicken fed inulin of dahlia tuber and Lactobacillus sp. Med. Pet. 39:112-118. https://doi.org/10.5398/medpet.2016.39.2.112
Amerah, A. M., V. Ravindran, R. G. Lentle, & D. G. Thomas. 2008. Influence of feed particle size on the performance, energy utilization, digestive tract development, and digesta parameters of broiler fed wheat- and corn-based diets. Poult. Sci. 87: 2320-2328. http://doi.10.3382/ps.2008-00149
Apolinario, A. C., B. P. G. de Lima Damasceno, N. E. de Macêdo Beltrão, A. Pessoa, A. Converti, & J. A. da Silva. 2014. Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohyd. Polym. 101:368-378. https://doi.org/10.1016/j.carbpol.2013.09.081
Cholis, M. A., N. Suthama, & B. Sukamto. 2018. Feeding microparticle protein diet combined with Lactobacillus sp. on existence of intestinal bacteria and growth of broiler chickens. J. Indonesian Trop. Anim. Agric. 43:265–271. https://doi.10.14710/jitaa.43.3.265-271.
Ding, B., L. Chen, H. Lin, X. Wang, L. Zhang, X. Ni, A. Pirone, S. R. Madigosky, & B. Fronte. 2021. Effects of inulin diet supplementation on production performance, gut traits, and incidence of ascites in Haidong chicks under hypoxic conditions. Anim. Biosci. 34:417–426. https://doi.org/10.5713/ajas.20.0508
Fajrih, N., N. Suthama, & V. D. Yunianto. 2014. Body resistance and productive performances of crossbred local chicken fed inulin of dahlia tubers. Med. Pet. 37:108–114. https://doi.org/10.5398/medpet.2014.37.2.108
Fardiaz, S. 1992. Analisis Mikrobiologi Pangan. Raja Grafindo Persada, Jakarta.
Gharechopogh, A. M., J. Fakhraei, S. A. Hosseini, H. M. Yarahmadi, & H. Lotfollahian. 2021. Performance, immune responses, and blood biochemistry of broiler chickens fed with plant growth compound. Trop. Anim. Sci. J. 44:62–70. https://doi.org/10.5398/tasj.2021.44.1.62
Goh, C. H., T. C. Loh, H. L. Foo, & F. Nobilly. 2020. Fecal microbial population and growth in broiler fed organic acids and palm fat-composed diet. Trop. Anim. Sci. J. 43:151-157. https://doi.org/10.5398/tasj.2020.43.2.151
Gonzalez-Ortiz, G., O. A. Olukosi, G. Jurgens, J. Apajalahti, & M. R. Bedford. 2020. Short-chain fatty acids and ceca microbiota profiles in broilers and turkeys in response to diets supplemented with phytase at varying concentrations, with or without xylanase. Poult. Sci. 99:2068–2077. https://doi.org/10.1016/j.psj.2019.11.051
Gurram, S., V. C. Preetam, K. V. Lakshmi, M. V. L. N. Raju, M. Venkateswarlu, & S. Bora. 2022. Synergistic effect of probiotic, chicory root powder and coriander seed powder on growth performance, antioxidant activity and gut health of broiler chickens. PloS ONE 17:1–22. https://doi.org/10.1371/journal.pone.0270231
Hosseinifard, E-S., K. Bavafa-Valenlia, M. Saghafi-Asl, & M. Morshedi. 2020. Antioxidative and metabolic effects of Lactobacillus plantarum, inulin, and their synbiotic on the hypothalamus and serum of healthy rats. Nutr. Metab. Insights 13:1–8. https://doi.10.1177/1178638820925092
Huang, C. & H. H. Stein. 2016. Amino acid digestibility in soy protein concentrate with different particle sizes fed to weanling pigs. Pig Progress Res. Report. pp. 32–33.
Hunt, A. Ö., M. Çetinkaya, F. Ö. Yılmaz, M. Yıldırım, M. Berköz, & S. Yalın. 2019. Effect of dietary supplementation of inulin on growth performance, digestive enzyme activities and status of rainbow trout (Oncorhynchus mykiss). Turk. J. Agric. Food Sci. Technol. 7:1344–1353. http://doi.10.24925/turjaf.v7i9.1344-1353.2581
Jambrak, A. R., T. J. Mason, V. Lelas, L. Paniwnyk, & Z. Herceg. 2014. Effect of ultrasound treatment on particle size and molecular weight of whey proteins. J. Food Eng. 121:15–23. https://doi.org/10.1016/j.jfoodeng.2013.08.012
Julendra, H., A. Sofyan, L. Istiqomah, M. F. Karimy, Abinawanto, & Yasman. 2021. Intestial morphology, energy availability, and growth performace of broilers treated with the combination or probiotic and inulin. Trop. Anim. Sci. J. 44:39–47. https://doi.org/10.5398/tasj.2021.44.1.39
Krismiyanto, L., N. Suthama, & H. I. Wahyuni. 2014. Feeding effect of inulin derived from Dahlia variabilis tuber on intestinal microbes in starter period of crossbred native chickens. J. Indones. Trop. Anim. Agric. 39:217-223. https://doi.org/10.14710/jitaa.39.4.217-223
Lee, M. T., W. C. Lin, B. Yu, & T. T. Lee. 2017. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals – A review. Asian-Australas. J. Anim. Sci. 30:299–308. https://doi.10.5713/ajas.16.0438
Liu, H. N., Y. Liu, L. L. Hu, Y. L. Suo, L. Zhang, F. Jin, X. A. Feng, N. Teng, & Y. Li. 2014. Effects of dietary supplementation of quercetin on performance, egg quality, cecal microflora populations, and antioxidant status in laying hens. Poult. Sci. 93:347–353. https://doi.10.3382/ps.2013-03225
Maesaroh, U., N. D. Dono, & Zuprizal. 2022. Performance, microbial populations, and jejunal morphology of broilers supplemented with nano-encapsulated graviola leaf extract. Trop. Anim. Sci. J. 5:64–72. https://doi.org/10.5398/tasj.2022.45.1.64
Mangisah, I., N. Suthama, & H. Rizqiati. 2020. Feeding combination of Lactobacillus casei and extracts of dahlia tuber or garlic on intestinal bacteria, nutrients digestibility and performance of broiler chickens. J. Ilmu-Ilmu Petenakan 30:158–166. https://doi.org/10.21776/ub.jiip.2020.030.02.08
Masoud-Moghaddam, S., J. Mehrzad, A. H. Alizadeh-Ghamsari, R. B. Kashani, & J. Saeidi. 2021. Comparison of different herbal additives on immune response and growth performance of broiler chickens. Trop. Anim. Sci. J. 44:327–335. https://doi.org/10.5398/tasj.2021.44.3.327
Petkova, N. T., G. Sherova, & P. P. Denev. 2018. Characterization of inulin from dahlia tubers isolated by microwave and ultrasound-assisted extractions. Int. Food Res. J. 25:1876–1884. http://www.ifrj@upm.edu.my
Petrovsky, N., P. D. Cooper, & T. M. Advax. 2015. A novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety. Vaccine 33:5920–5926. https://doi.org/10.1016/j.vaccine.2015.09.030
Perdinan, A., H. I. Wahyuni, & N. Suthama. 2019. Body resistance and growth performance of broiler fed glucomannan extracted from Amorphophallus onchophyllus tuber. Trop. Anim. Sci. J. 42:33–38. https://doi.org/10.5398/tasj.2019.42.1.33
Purbarani, S. A., H .I. Wahyuni, & N. Suthama. 2019. Dahlia Inulin and Lactobacillus sp. in step down protein diet on villi development and growth of KUB chickens. Trop. Anim. Sci. J. 42:19–24. https://doi.org/10.5398/tasj.2019.42.1.19
Ravindran, V., L. I. Hew, G. Ravindran, & W. L. Bryden. 1999. A comparison of ileal digesta and excreta analysis for the determination of amino acid digestibility in food ingredients for poultry. Br. Poult. Sci. 40:266-274. https://doi.org/10.1080/00071669987692
Rinttilä, T. & J. Apajalahti. 2013. Intestinal microbiota and metabolites – Implications for broiler chicken health and performance. J. Appl. Poult. Res. 22:647–658. https://doi.org/10.3382/japr.2013-00742
Redondo-Cuenca, A., S. E. Herrera-Vazquez, L. Condezo-Hoyos, E. Gomez-Ordonez, & P. Ruperez. 2021. Inulin extraction from common inulin-containing plant sources. Indust. Crops Prod. 170:1–9. https://doi.org/10.1016/j.indcrop.2021.113726
Sang, H-M., H-Y. Zhou, J-Y.Yang, R. Li, H. Song, & H-X. Wu. 2018. In vitro and in vivo antioxidant activities of inulin. PloS ONE 13:1–12. https://doi.org/10.1371/journal.pone.0192273
Shokryazdan, P., M. F. Jahromi, J. B. Liang, K. Ramasamy, S. C. Chin, & Y. W. Ho. 2017. Effects of a Lactobacillus salivarius mixture on performance, intestinal health and serum lipids of broiler chickens. PloS ONE 12:1–20. https://doi.org/10.1371/journal.pone.0175959
Sibbald, I. R. & S. Wolynetz. 1985. Estimates of retained nitrogen used to correct estimates of bioavailable energy. Poult. Sci. 64:1506-1513. https://doi.org/10.3382/ps.0641506
Suthama, N. 2003. Metabolisme protein pada ayam kampong periode pertumbuhan yang diberi ransum memakai dedak padi fermentasi. J. Pengembangan Peternakan Tropis. Edisi Spesial. Pp. 44-48 (In Indonesian language with English abstract).
Suthama, N. & P. Wibawa. 2018. Amino acids digestibility of pelleted microparticle protein of fish meal and soybean meal in broiler chickens. J. Indonesian. Trop. Anim. Agric. 43:169–176. https://doi.org/10.14710/jitaa.43.2.169-176
Suthama, N, B. Sukamto, & I. Mangisah. 2019. Healthy meat production of broiler fed microparticle-protein diet with inclusion of inulin derived from dahlia tuber extract. IOP Conf. Series: Earth and Environmental Science 292 (2019) 012066. https://doi.org/10.1088/1755-1315/292/1/012066
Suthama, N, B. Sukamto, I. Mangisah, & L. Krismiyanto. 2021a. Immune status and growth of broiler fed diet with microparticle protein added with natural acidifier. Trop. Anim. Sci. J. 44:198–204. https://doi.org/10.5398/tasj.2021.44.2.198
Suthama, N, B. Sukamto, I. Mangisah, & L. Krismiyanto. 2021b. Feeding microparticle protein sources composed-diet with addition of natural additive to produce clean product of broiler for consumer health friendly. IOP Conf. Series: Earth and Environmental Science 803 (2021) 012007. https://doi.org/10.1088/1755-1315/803/1/012007
Wang, H-F, X-H Zhong, W-Y Shi, & B. Guo. 2011. Study of malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in chickens Infected with avian infectious bronchitis virus. Afr. J. Biotechnol. 10:9213–9217. https://doi.10.5897/AJB11.782
Zhao, X., Z. B. Yang, W. R. Yang, Y. Wang, S. Z. Jiang, & G. G. Zhang. 2011. Effects of ginger root (Zingiber officinale) on laying performance and antioxidant status of laying hens and on dietary oxidation stability. Poult. Sci. 90:1720–1727. https://doi.org/10.3382/ps.2010-01280
Zhou Q., S. Wang, G. Yang, W. Zhao, & H. Li. 2016. Development and evaluation of a herbal formulation with anti-pathogenic activities and probiotics stimulatory effects. J. Integrat. Agric. 15:1103–1111. https://doi.org/10.1016/S2095-3119(15)61146-7
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.