Association of Stearoyl-CoA Desaturase Gene Polymorphisms on Milk Fatty Acid Composition of Holstein Friesian Cows in Indonesia

R. Azis, A. Anggraeni

Abstract

Milk fatty acid composition determines milk quality and the health of consumers. Stearoyl-CoA desaturase (SCD) gene controls lipid metabolism in the mammary gland, which plays an essential role in catalyzing saturated fatty acids (SFA) into monounsaturated fatty acids (MUFA). This study aimed to analyze the genetic diversity of the SCD gene and its effect on the milk fatty acid quality of Holstein Friesian (HF). Genetic variants were identified on 226 HF cattle from various dairy breeding Stations in West Java, Central Java, and East Java in Indonesia. Blood samples were extracted and amplified using Real-Time Polymerase Chain Reaction (RT-PCR) technique based on TaqMan Probe to determine the genotype of the SCD gene at g.10153A>G locus. Milk samples were analyzed by Gas Chromatography and Mass Spectrometry (GCMS) on 48 lactating cows. The SCD g.10153A>G produced three genotypes, namely AA (0.112), AG (0.640), and GG (0.271); and two alleles, namely A (0.409) and G (0.591). Genotype polymorphism of the SCD g.10153A>G had a significant effect (p<0.05) on SFA, including propionic acid (C3:0), butyric acid (C4:0), caprylic acid (C8:0), and pentacosylic acid (C25:0); and MUFA including hexadecenoic acid (C16:1) and total fatty acids. The SCD g.10153A>G SNP (AG genotype) could be one of the candidates as a genetic marker to assist selection in reducing SFA and increasing MUFA in the milk content of HF cows in Indonesia.

References

Alim, M., Y. Fan, X. Wu, Y. Xie, Y. Zhang, S. Zhang, D. Sun, Q. Zhang, L. Liu, & G. Guo. 2012. Genetic effects of stearoyl-coenzyme A desaturase (SCD) polymorphism on milk production traits in the Chinese dairy population. Mol. Biol. Rept. 39:8733-8740. https://doi.org/10.1007/s11033-012-1733-6
Alsharari, Z. D., K. Leander, P. Sjögren, A. Carlsson, T. Cederholm, U. De Faire, M. L. Hellenius, M. Marklund, & U. Risérus. 2020. Association between carbohydrate intake and fatty acids in the de novo lipogenic pathway in serum phospholipids and adipose tissue in a population of Swedish men. Eur. J. Nutr. 59:2089-2097. https://doi.org/10.1007/s00394-019-02058-6
Anggraeni, A., F. Saputra, A. Hafid, & A. Ishak. 2020. Non-genetic and genetic effects on growth traits from birth to 120 days of age of G2 Sapera Goat. Indonesian Journal Animal Veterinary Science 25:48-59. https://doi.org/10.14334/jitv.v25i2.2498
Asmarasari, S. A., C. Sumantri, A. Gunawan, E. Taufik, & A. Anggraeni. 2020. Genetic variants of milk protein genes and their association with milk components in Holstein Friesian cattle. Indonesian Journal Animal Veterinary Science 25:99-111. https://doi.org/10.14334/jitv.v25i3.2502
Avilés, C., A. Horcada, O. Polvillo, A. Membrillo, G. Anaya, A. Molina, M. Alcalde, & B. Panea. 2016. Association study between variability in the SCD gene and the fatty acid profile in perirenal and intramuscular fat deposits from Spanish goat populations. Small Rumin. Res. 136:127-131. https://doi.org/10.1016/j.smallrumres.2016.01.008
Azis, R., Jakaria, A. Anggraeni, & A. Gunawan. 2020. Acetyl-CoA carboxylase alpha gene polymorphism and its association with milk fatty acid of Holstein Friesian using real-time PCR method. Trop. Anim. Sci. J. 43:306-313. https://doi.org/10.5398/tasj.2020.43.4.306
Babafemi, E. O., B. Cherian, B. P. Banting, L. Mills, & K. Ngianga. 2017. Effectiveness of real-time polymerase chain reaction assay for the detection of Mycobacterium tuberculosis in pathological samples: A systematic review and meta-analysis. Systematic Reviews 6:1-16. https://doi.org/10.1186/s13643-017-0608-2
Bernard, L., C. Leroux, & Y. Chilliard. 2013. Expression and Nutritional Regulation of Stearoyl-CoA Desaturase Genes in the Ruminant Mammary Gland: Relationship with Milk Fatty Acid Composition. Stearoyl-CoA desaturase Genes in Lipid Metabolism. p. 161-193. Springer, New York. https://doi.org/10.1007/978-1-4614-7969-7_13
Bittante, G. & A. Cecchinato. 2013. Genetic analysis of the fourier-transform infrared spectra of bovine milk with emphasis on individual wavelengths related to specific chemical bonds. J. Dairy Sci. 96:5991-6006. https://doi.org/10.3168/jds.2013-6583
Choi, S., S. Park, B. Johnson, K. Chung, C. Choi, K. Kim, W. Kim, & B. Smith. 2015. AMPKα, C/EBPβ, CPT1β, GPR43, PPARγ, and SCD gene expression in single-and co-cultured bovine satellite cells and intramuscular preadipocytes treated with palmitic, stearic, oleic, and linoleic acid. Asian-Australas. J. Anim. Sci. 28:411. https://doi.org/10.5713/ajas.14.0598
Conneely, M., D. Berry, R. Sayers, J. Murphy, I. Lorenz, M. Doherty, & E. Kennedy. 2013. Factors associated with the concentration of immunoglobulin G in the colostrum of dairy cows. Animal 7:1824-1832. https://doi.org/10.1017/S1751731113001444
Criado-Mesas, L., M. Ballester, D. Crespo-Piazuelo, A. Castelló, A. I. Fernández, & J. M. Folch. 2020. Identification of eQTLs associated with lipid metabolism in Longissimus dorsi muscle of pigs with different genetic backgrounds. Sci. Rep. 10:1-13. https://doi.org/10.1038/s41598-020-67015-4
Ferlay, A. & Y. Chilliard. 2020. Effect of linseed, sunflower, or fish oil added to hay-, or corn silage-based diets on milk fat yield and trans-C18: 1 and conjugated linoleic fatty acid content in bovine milk fat. Livest. Sci. 235:104005. https://doi.org/10.1016/j.livsci.2020.104005
Fernández‐Barroso, M. Á., L. Silió, C. Rodríguez, P. Palma‐Granados, A. López, C. Caraballo, F. Sánchez‐Esquiliche, F. Gómez‐Carballar, J. García‐Casco, & M. Muñoz. 2020. Genetic parameter estimation and gene association analyses for meat quality traits in open‐air free‐range Iberian pigs. J. Anim. Breed. Genet. 137:581-598. https://doi.org/10.1111/jbg.12498
Furqon, A., A. Gunawan, N. Ulupi, T. Suryati, & C. Sumantri. 2017. Expression and association of SCD gene polymorphisms and fatty acid compositions in chicken cross. Med. Pet. 40:151-157. https://doi.org/10.5398/medpet.2017.40.3.151
Gunawan, A., D. Anggrela, K. Listyarini, M. Abuzahra, Jakaria, M. Yamin, I. Inounu, & C. Sumantri. 2018. Identification of single nucleotide polymorphism and pathway analysis of apolipoprotein A5 (APOA5) related to fatty acid traits in Indonesian sheep. Trop. Anim. Sci. J. 41:165-173. https://doi.org/10.5398/tasj.2018.41.3.165
Li, C., D. Sun, S. Zhang, L. Liu, M. Alim, & Q. Zhang. 2016. A post‐GWAS confirming the SCD gene associated with milk medium‐and long‐chain unsaturated fatty acids in Chinese Holstein population. Anim. Genet. 47:483-490. https://doi.org/10.1111/age.12432
Livingstone, K. M., J. A. Lovegrove, & D. I. Givens. 2012. The impact of substituting SFA in dairy products with MUFA or PUFA on CVD risk: evidence from human intervention studies. Nutr. Res. Rev. 25:193-206. https://doi.org/10.1017/S095442241200011X
Maharani, D., H. B. Park, J. B. Lee, C. K. Yoo, H. T. Lim, S. H. Han, S. S. Lee, M. S. Ko, I. C. Cho, & J. H. Lee. 2013. Association of the gene encoding stearoyl-CoA desaturase (SCD) with fatty acid composition in an intercross population between Landrace and Korean native pigs. Mol. Biol. Rep. 40:73-80. https://doi.org/10.1007/s11033-012-2014-0
Markiewicz-Kęszycka, M., G. Czyżak-Runowska, P. Lipińska, & J. Wójtowski. 2013. Fatty acid profile of milk-a review. Bull. Vet. Inst. Pulawy 57:135-139. https://doi.org/10.2478/bvip-2013-0026
Mauvoisin, D. & C. Mounier. 2011. Hormonal and nutritional regulation of SCD1 gene expression. Biochimie 93:78-86. https://doi.org/10.1016/j.biochi.2010.08.001
Mia, M., M. Khandoker, S. Husain, M. Faruque, & D. Notter. 2013. Estimation of genetic and phenotypic parameters of some reproductive traits of Black Bengal does. Turk. J. Vet. Anim. Sci. 38:469-473. https://doi.org/10.3906/vet-1312-30
Moioli, B., G. Contarini, A. Avalli, G. Catillo, L. Orru, G. De Matteis, G. Masoero, & F. Napolitano. 2007. Effect of stearoyl-coenzyme a desaturase polymorphism on fatty acid composition of milk. J. Dairy Sci. 90:3553-3558. https://doi.org/10.3168/jds.2006-855
Nguyen, Q. V., B. S. Malau-Aduli, J. Cavalieri, P. D. Nichols, & A. E. Malau-Aduli. 2019. Enhancing omega-3 long-chain polyunsaturated fatty acid content of dairy-derived foods for human consumption. Nutrients 11:743. https://doi.org/10.3390/nu11040743
Nishimori, A., S. Konnai, T. Okagawa, N. Maekawa, R. Ikebuchi, S. Goto, Y. Sajiki, Y. Suzuki, J. Kohara, & S. Ogasawara. 2017. In vitro and in vivo antivirus activity of an anti-programmed death-ligand 1 (PD-L1) rat-bovine chimeric antibody against bovine leukemia virus infection. PLoS One 12:e0174916. https://doi.org/10.1371/journal.pone.0174916
Ntambi, J. M. & M. Miyazaki. 2004. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog. Lipid Res. 43:91-104. https://doi.org/10.1016/S0163-7827(03)00039-0
Oh, D. Y., M. H. Jin, Y. S. Lee, J. J. Ha, B. K. Kim, J. S. Yeo, & J. Y. Lee. 2013. Identification of stearoyl-CoA desaturase (SCD) gene interactions in Korean native cattle based on the multifactor-dimensionality reduction method. Asian-Australas. J. Anim. Sci. 26:1218. https://doi.org/10.5713/ajas.2013.13058
Pauciullo, A., G. Cosenza, A. D’avino, L. Colimoro, D. Nicodemo, A. Coletta, M. Feligini, C. Marchitelli, D. Di Berardino, & L. Ramunno. 2010. Sequence analysis and genetic variability of stearoyl CoA desaturase (SCD) gene in the Italian Mediterranean river buffalo. Mol. Cell. Probes 24:407-410. https://doi.org/10.1016/j.mcp.2010.07.009
Pewan, S. B., J. R. Otto, R. Huerlimann, A. M. Budd, F. W. Mwangi, R. C. Edmunds, B. W. B. Holman, M. L. E. Henry, R. T. Kinobe, & O. A. Adegboye. 2020. Genetics of omega-3 long-chain polyunsaturated fatty acid metabolism and meat eating quality in Tattykeel Australian White lambs. Genes 11:587. https://doi.org/10.3390/genes11050587
Rincon, G., A. Islas-Trejo, A. R. Castillo, D. E. Bauman, B. J. German, & J. F. Medrano. 2012. Polymorphisms in genes in the SREBP1 signalling pathway and SCD are associated with milk fatty acid composition in Holstein cattle. J. Dairy Res. 79:66-75. https://doi.org/10.1017/S002202991100080X
Ropka-Molik, K., J. Knapik, M. Pieszka, T. Szmatoła, & K. Piórkowska. 2017. Nutritional modification of SCD, ACACA and LPL gene expressions in different ovine tissues. Arch. Anim. Breed. 60:243-250. https://doi.org/10.5194/aab-60-243-2017
Roy, R., L. Ordovas, S. Taourit, P. Zaragoza, A. Eggen, & C. Rodellar. 2006. Genomic structure and an alternative transcript of bovine mitochondrial glycerol-3-phosphate acyltransferase gene (GPAM). Cytogenet. Genome. Res. 112:82-89. https://doi.org/10.1159/000087517
Średnicka-Tober, D., M. Barański, C. J. Seal, R. Sanderson, C. Benbrook, H. Steinshamn, J. Gromadzka-Ostrowska, E. Rembiałkowska, K. Skwarło-Sońta, & M. Eyre. 2016. Higher PUFA and n-3 PUFA, conjugated linoleic acid, α-tocopherol and iron, but lower iodine and selenium concentrations in organic milk: A systematic literature review and meta-and redundancy analyses. Br. J. Nutr. 115:1043-1060. https://doi.org/10.1017/S0007114516000349
Stanton, C., J. Murphy, E. McGrath, & R. Devery. 2020. Animal Feeding Strategies for Conjugated Linoleic acid Enrichment of Milk. In Advances in Conjugated Linoleic Acid Research. 1st. Ed. AOCS Publishing. 2:123-145. https://doi.org/10.4324/9780429270703-9
Tudisco, R., S. Calabrò, M. Cutrignelli, G. Moniello, M. Grossi, O. Gonzalez, V. Piccolo, & F. Infascelli. 2012. Influence of organic systems on Stearoyl-CoA desaturase gene expression in goat milk. Small Rumin. Res. 106:S37-S42. https://doi.org/10.1016/j.smallrumres.2012.04.031
Uemoto, Y., H. Nakano, T. Kikuchi, S. Sato, M. Ishida, T. Shibata, H. Kadowaki, E. Kobayashi, & K. Suzuki. 2012. Fine mapping of porcine SSC14 QTL and SCD gene effects on fatty acid composition and melting point of fat in a Duroc purebred population. Anim. Genet. 43:225-228. https://doi.org/10.1111/j.1365-2052.2011.02236.x
Valenti, B., A. Criscione, V. Moltisanti, S. Bordonaro, A. de Angelis, D. Marletta, F. di Paola, & M. Avondo. 2019. Genetic polymorphisms at candidate genes affecting fat content and fatty acid composition in Modicana cows: Effects on milk production traits in different feeding systems. Animal 13:1332-1340. https://doi.org/10.1017/S1751731118002604
Wang, X., C. Fang, H. He, H. Cao, L. Liu, L. Jiang, Y. Ma, & W. Liu. 2021. Identification of key genes in sheep fat tail evolution based on RNA-seq. Genes 781:145492. https://doi.org/10.1016/j.gene.2021.145492
Wang, J., Y. Zhang, J. Wang, L. Liu, X. Pang, & W. Yuan. 2017. Development of a TaqMan-based real-time PCR assay for the specific detection of porcine circovirus 3. J. Virol. Methodes 248:177-180. https://doi.org/10.1016/j.jviromet.2017.07.007
Yilmaz-Ersan, L., T. Ozcan, A. Akpinar-Bayizit, & S. Sahin. 2018. Comparison of antioxidant capacity of cow and ewe milk kefirs. J. Dairy Sci. 101:3788-3798. https://doi.org/10.3168/jds.2017-13871
Yokota, S., H. Sugita, A. Ardiyanti, N. Shoji, H. Nakajima, M. Hosono, Y. Otomo, Y. Suda, K. Katoh, & K. Suzuki. 2012. Contributions of FASN and SCD gene polymorphisms on fatty acid composition in muscle from Japanese Black cattle. Anim. Genet. 43:790-792. https://doi.org/10.1111/j.1365-2052.2012.02331.x

Authors

R. Azis
rosialfatih1953@gmail.com (Primary Contact)
A. Anggraeni
AzisR., & AnggraeniA. (2023). Association of Stearoyl-CoA Desaturase Gene Polymorphisms on Milk Fatty Acid Composition of Holstein Friesian Cows in Indonesia. Tropical Animal Science Journal, 46(1), 27-35. https://doi.org/10.5398/tasj.2023.46.1.27

Article Details