Safranin-O-Mediated Photodynamic Inactivation of Microorganisms Reduces Milk Contaminating Bacteria Count and Prevented New Cases of Mastitis

B. M. Rodrigues, B. B. Saraiva, R. C. da Silva Junior, K. S. S. Campanholi, C. R. Alcalde, P. C. Pozza, G. S. Madrona, M. S. S. Pozza

Abstract

The objectives of this study were to evaluate the antimicrobial capacity of the photosensitizer (PS) safranin-O (Sf), through antimicrobial photodynamic therapy (PDTa), against strains of Pseudomonas fluorescens (PV1, PVh, and PC3) and Staphylococcus aureus (SV1, SV3, SV5, SC5, SC6, and SC8) isolated from milk from cows and goats and the biofilm formation on equipment. To evaluate the effectiveness of the formulation, studies were carried out through in situ applications of the Sf hydrogel as post-dipping in lactating cows and goats. Antibiogram tests showed the resistance of Staphylococcus aureus isolates to ampicillin, trimethoprim, and tetracycline. In the in vitro assays in bovine milk, the PDTa reduced the P. fluorescens (PV1) counts by 17.4% (p<0.05). In goat milk, the PDTa reduced the growth of S. aureus by up to 24.43% (SC8) (p<0.05), and for P. fluorescens (PC3), the inactivation was 50.25%. In biofilm formation, there were reduction of 66.66% (SV1) and 38.27% (SC5) in the adhesion of S. aureus to stainless steel coupons. For in situ applications, photoactivated Sf maintained bacterial counts in bovine milk similar to the control treatment (lactic acid). During the experimental period (28 days), there were reductions of 23.23% and 28.85% in staphylococci and Pseudomonas spp. in cow’s milk and 76.13% for Pseudomonas spp. in goat milk (p<0.05). There was no significant difference in goat milk’s somatic cell count (CCS). These results indicate that photoactivated Sf can help reduce milk contamination and maintain the health of the mammary gland.

References

Bauer, M. D., W. M. M. Kirby, J. C. Sherris, & M. Turck. 1966. Antibiotic susceptibility testing by a standardized single disk method. Ame. J. Clin. Pathol. 45:493-496. https://doi.org/10.1093/ajcp/45.4_ts.493
Brakstad, O. G., K. Aasbakk, & J. A. Maeland. 1992. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 30:1654-1660. https://doi.org/10.1128/jcm.30.7.1654-1660.1992
CLSI (Clinical and Laboratory Standards Institute). 2005. Performance Standards for Antimicrobial Susceptibility Testing; Fifteenth Informational Supplement. CLSI document M100-S15 (ISBN 1- 56238-556-9). Clinical and Laboratory Standards Institute, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA.
Das, A., C. Guha, U. Biswas, P. S. Jana, A. Chatterjee, & I. Samanta. 2017. Detection of emerging antibiotic resistance in bacteria isolated from subclinical mastitis in cattle in West Bengal. Veterinary Word. 10:517-520. https://doi.org/10.14202/vetworld.2017.517-520
da Silva, E. R. & N. da Silva. 2005. Coagulase gene typing of Staphylococcus aureus isolated from cows with mastitis in southeastern Brazil. Can. J. Vet. Res. 69:260–264.
Dutra, T. V., D. B. do Prado, M. M. dos Anjos, M. M. Junior, J. M. G. Mikcha, & B. A. A. Filho. 2020. Contribution of environmental fa rs in the formation of biofilms by Alicyclobacillus acidoterrestris on surfaces of the orange juice industry. Ciência Rural. 50:1-5. https://doi.org/10.1590/0103-8478cr20190790
Galstyan, A. & U. Dobrindt. 2019. Determining and unravelling origins of reduced photoinactivation efficacy of bacteria in milk. J. Photochem. Photobiol. B. 197:111554. https://doi.org/10.1016/j.jphotobiol.2019.111554
Kashef, N. & M. R. Hamblin. 2017. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation?. Drug Resist. Updat. 31:31-42. https://doi.org/10.1016/j.drup.2017.07.003
Lampugnani, C., M. Z. Was, M. T. M. Montanhini, L. A. Nero, & L. D. S. Bersot. 2019. Quantification of psychrotrophic bacteria and molecular identification of Pseudomonas fluorescens in refrigerated raw milk. Arq. Inst. Biol (Sao Paulo). 86:1-5. https://doi.org/10.1590/1808-1657001212018
Malik, T. A., M. Mohini, S. H. Mir, B. A. Ganaie, D. Singh, T. K. Varun, S. Howal, & S. Thakur. 2018. Somatic cells in relation to udder health and milk quality – A review. J. Anim. Health Prod. 6:18-26. https://doi.org/10.17582/journal.jahp/2018/6.1.18.26
Martin, J. G. P., G. O. Silva, C. R. Fonseca, C. B. Morales, C. S. P. Silva, D. L. Miquelluti, & E. Porto. 2016. Efficiency of a cleaning protocol for the removal of enterotoxigenic Staphylococcus aureus strains in dairy plants. Int. J. Food Microbiol. 238:295-301. https://doi.org/10.1016/j.ijfoodmicro.2016.09.018
Sellera, F. P., C. P. Sabino, M. S. Ribeiro, R. G. Gargano, N. R. Benites, P. A. Melville, & F. C. Pogliani. 2016. In vitro photoinactivation of bovine mastitis related pathogens. Photodiagnosis Photodyn. Ther. 13:276–281. https://doi.org/10.1016/j.pdpdt.2015.08.007
Silva Junior, R. C., K. S. S. Campanholi, F. A. P. Moraes, M. S. S. Pozza, G. T. Santos, N. Hioka, & W. Caetano. 2019. Development and applications of safranin-loaded Pluronic F126 and P123 photoactive nanocarries for prevention of bovine mastitis: In vitro and in vivo studies. Dyes Pigm. 167:204–215. https://doi.org/10.1016/j.dyepig.2019.04.037
Silva Junior, R. C., K. S. S. Campanholi, F. A. P. Moraes, M. S. S. Pozza, L. V. Castro-Hoshino, L. B. Baesso, J. B. Silva, M. L. Bruschi, & W. Caetano. 2020. Photothermal stimuli-responsive hydrogel containing safranine for mastitis treatment in veterinary using phototherapy. ACS Appl. Bio Mater. 4:581–596. https://doi.org/10.1021/acsabm.0c01143
Tünger, Ö., G. Dinç, B. Özbakkaloglu, Ü. C. Atman, & Ü. Algün. 2000. Evaluation of rational antibiotic use. Int. J. Antimicrob. Agents. 15:131-135. https://doi.org/10.1016/S0924-8579(00)00158-8
Wang, H., L. Cai, Y. Li, X. Xu, & G. Zhou. 2018. Biofilm formation by meat-borne Pseudomonas fluorescens on stainless steel and its resistance to disinfectants. Food Control. 91:397–403. https://doi.org/10.1016/j.foodcont.2018.04.035
You, S. & D. Van Winkle. 2010. Single molecule observation of DND electrophoresis in pluronic F127. J. Phys. Chem. B. 11:4171-4177. https://doi.org/10.1021/jp911183m
Zarei, M., A. Yousefvand, S. Maktabi, M. P. Borujeni, & H. Mohammadpour. 2020. Identification, phylogenetic characterisation and proteolytic activity quantification of high biofilm-forming Pseudomonas fluorescens group bacterial strains isolated from cold raw milk. Int. Dairy J. 109:104787. https://doi.org/10.1016/j.idairyj.2020.104787

Authors

B. M. Rodrigues
B. B. Saraiva
R. C. da Silva Junior
K. S. S. Campanholi
C. R. Alcalde
P. C. Pozza
G. S. Madrona
M. S. S. Pozza
msspozza@uem.br (Primary Contact)
RodriguesB. M., SaraivaB. B., da Silva JuniorR. C., CampanholiK. S. S., AlcaldeC. R., PozzaP. C., MadronaG. S., & PozzaM. S. S. (2023). Safranin-O-Mediated Photodynamic Inactivation of Microorganisms Reduces Milk Contaminating Bacteria Count and Prevented New Cases of Mastitis. Tropical Animal Science Journal, 46(1), 122-130. https://doi.org/10.5398/tasj.2023.46.1.122

Article Details