Performance, Methane Emission, Nutrient Utilization, and the Nitrate Toxicity of Ruminants with Dietary Nitrate Addition: A Meta-analysis from In Vivo Trials
Abstract
This study aims to evaluate the effects of dietary nitrate addition on performance, methane emission, nutrient utilization, and the nitrate toxicity of ruminants by using the meta-analysis methodology from in vivo trials. A total of 38 published papers and 139 studies were used. Parameters observed were feed intake, animal performance, enteric methane emission, and nitrate toxicity. Data were subjected to the mixed model methodology. Nitrate doses or forms were treated as fixed factors, while the different studies were treated as random factors. Results revealed that nitrate supplementation significantly decreased the milk protein content, milk fat content, dry matter intake, gross energy intake, the molar proportion of the propionic acid, methane production, and the metabolism of vitamin A in a linear pattern (p<0.05). Moreover, nitrate addition significantly increased nitrate intake, the molar proportion of the acetic acid, the ratio of acetic acid to propionic acid, hydrogen molecule production, microbial protein synthesis, and nitrite blood levels (p<0.05). However, treatments did not affect the milk yield, final body weight, nitrate retention, and blood methemoglobin. There was a significant interaction among the animal types and the nitrate (forms and doses) on the milk protein content, dry matter intake, rumen pH value, total volatile fatty acids, the molar proportion of propionic acid, NH3 concentration, H2 molecule, microbial protein synthesis, metabolism of vitamin A, and the blood methemoglobin. This concludes that nitrate supplementation is an alternative feed additive for mitigating the enteric methane in ruminants without any adverse effects on animals’ health or performance despite its impact on the feed consumption rate.
References
Alaboudit, A. R. & S. S. N. Receivedg. 1985. Effect of acclimation to high nitrate intakes on some rumen fermentation parameters in sheep. Can. J. Anim. Sci. 65:841-849. https://doi.org/10.4141/cjas85-099
Alemu, A. W., A. Romero-Perez, R. C. Araujo, & K. A. Beauchemin. 2019. Effect of encapsulated nitrate and microencapsulated blend of essential oils on growth performance and methane emissions from beef steers fed backgrounding diets. Animals. 9:21. https://doi.org/10.3390/ani9010021
Anderson, R. C., W. Majak, A. Mark, Rassmussen, T. R. Callaway, R. C. Beier, D. J. Nisbet, & M. J. Allison. 2005. Toxicity and metabolism of the conjugates of 3-nitropropanol and 3-nitropropionic acid in forages poisonous to livestock. J. Agric. Food Chem. 53:2344–2350. https://doi.org/10.1021/jf040392j
Arif, M., M. Sarwar, Mehr-Un-Nisa, Z. Hayat, & M. Younas. 2016. Effect of supplementary sodium nitrate and sulphur on methane production and growth rates in sheep and goats fed forage based diet low in true protein. J. Anim. Plant Sci. 26:69–78.
Asanuma, Narito, S. Yokoyama, & T. Hino. 2014. Effects of nitrate addition to a diet on fermentation and microbial populations in the rumen of goats, with special reference to selenomonas ruminantium having the ability to reduce nitrate and nitrite. Anim. Sci. J. 86:378–384. https://doi.org/10.1111/asj.12307
de Raphélis-Soissan, V., L. Li, I. R. Godwin, M. C. Barnett, H. B. Perdok, & R. S. Hegarty. 2014. Use of nitrate and Propionibacterium acidipropionici to reduce methane emissions and increase wool growth of merino sheep. Anim. Prod. Sci. 54:1860–1866. https://doi.org/10.1071/AN14329
de Raphélis-Soissan, V., J. Nolan, I. R. Godwin, J. R. Newbold, H. B. Perdok, & R. S. Hegarty. 2017. Paraffin-wax-coated nitrate salt inhibits short-term methane production in sheep and reduces the risk of nitrite toxicity. Anim. Feed Sci. Technol. 229:57–64. https://doi.org/10.1016/j.anifeedsci.2017.04.026
El-Zaiat, H. M., R. C. Araujo, Y. A. Soltan, A. S. Morsy, H. Louvandini, A. V. Pires, H. O. Patino, P. S. Correa, & A. L. Abdalla. 2014. Encapsulated nitrate and cashew nut shell liquid on blood and rumen constituents, methane emission, and growth performance of lambs. J. Anim. Sci. 92:2214–2224. https://doi.org/10.2527/jas.2013-7084
Farra, P. A. & L. D. Satter. 1971. Manipulation of the ruminal fermentation. III. Effect of nitrate on ruminal volatile fatty acid production and milk composition. J. Dairy Sci. 54:1018–1024. https://doi.org/10.3168/jds.S0022-0302(71)85965-9
Granja-Salcedo, Y. Tatiana, R. M. I. Fernandes, R. C. D. Araujo, L. T. Kishi, T. T. Berchielli, F. D. D. Resende, A. Berndt, & G. R. Siqueira. 2019. Long-term encapsulated nitrate supplementation modulates rumen microbial diversity and rumen fermentation to reduce methane emission in grazing steers. Front. Microbiol. 10:1–12. https://doi.org/10.3389/fmicb.2019.00614
Guo, W. S., D. M. Schaefer, X. X. Guo, L. P. Ren, & Q. X. Meng. 2009. Use of nitrate-nitrogen as a sole dietary nitrogen source to inhibit ruminal methanogenesis and to improve microbial nitrogen synthesis in vitro. Asian-Australas. J. Anim. Sci. 22:542–549. https://doi.org/10.5713/ajas.2009.80361
Guyader, J., M. Eugène, M. Doreau, D. P. Morgavi, C. Gérard, C. Loncke, & C. Martin. 2018. Nitrate but not tea saponin feed additives decreased enteric methane emissions in nonlactating cows. J. Anim. Sci. 93:5367–5377. https://doi.org/10.2527/jas.2015-9367
Guyader, J., M. Eugène, B. Meunier, M. Doreau, D. P. Morgavi, M. Silberberg, Y. Rochette, C. Gerard, C. Loncke, & C. Martin. 2015. Additive methane-mitigating effect between linseed oil and nitrate fed to cattle. J. Anim. Sci. 93:3564–3577. https://doi.org/10.2527/jas.2014-8196
Guyader, J., M. Tavendale, C. Martin, & S. Muetzel. 2016. Dose-response effect of nitrate on hydrogen distribution between rumen fermentation end products: An in vitro approach. Anim. Prod. Sci. 56:224–230. https://doi.org/10.1071/AN15526
Hulshof, R. B. A., A. Berndt, W. J. J. Gerrits, J. Dijkstra, S. M. van Zijderveld, J. R. Newbold, & H. B. Perdok. 2012. Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. J. Anim. Sci. 90:2317–2323. https://doi.org/10.2527/jas.2011-4209
Klop, G., B. Hatew, A. Bannink, & J. Dijkstra. 2016. Feeding nitrate and docosahexaenoic acid affects enteric methane production and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 99:1161–1172. https://doi.org/10.3168/jds.2015-10214
Lee, C., R. C. Araujo, K. M. Koenig, & K. A. Beauchemin. 2017. Effects of encapsulated nitrate on growth performance, nitrate toxicity, and enteric methane emissions in beef steers: Backgrounding phase. J. Anim. Sci. 95:3700–3711. https://doi.org/10.2527/jas2017.1460
Lee, C. & K. A. Beauchemin. 2014. A review of feeding supplementary nitrate to ruminant animals: nitrate toxicity, methane emissions, and production performance. Can. J. Anim. Sci. 94:557–570. https://doi.org/10.4141/cjas-2014-069
Li, L. A., J. B. Davis, J. A. Nolan, & R. A. Hegarty. 2012. An initial investigation on rumen fermentation pattern and methane emission of sheep offered diets containing urea or nitrate as the nitrogen source. Anim. Prod. Sci. 52:653–658. https://doi.org/10.1071/AN11254
Li, L., C. I. Silveira, J. V. Nolan, I. R. Godwin, R. A. Leng, & R. S. Hegarty. 2013. Effect of added dietary nitrate and elemental sulfur on wool growth and methane emission of Merino lambs. Anim. Prod. Sci. 53:1195–1201. https://doi.org/10.1071/AN13222
Lin, M., D. M. Schaefer, W. S. Guo, L. P. Ren, & Q. X. Meng. 2011. Comparisons of in vitro nitrate reduction, methanogenesis, and fermentation acid profile among rumen bacterial, protozoal and fungal fractions. Asian-Australas. J. Anim. Sci. 24:471–478. https://doi.org/10.5713/ajas.2011.10288
Lin, M., D. M. Schaefer, G. Q. Zhao, & Q. X. Meng. 2013. Effects of nitrate adaptation by rumen inocula donors and substrate fiber proportion on in vitro nitrate disappearance, methanogenesis, and rumen fermentation acid. Animals. 7:1099–1105. https://doi.org/10.1017/S1751731113000116
Lund, P., R. Dahl, H. J. Yang, A. L. F. Hellwing, B. B. Cao, & M. R. Weisbjerg. 2014. The acute effect of addition of nitrate on in vitro and in vivo methane emission in dairy cows. Anim. Prod. Sci. 54:1432–1435. https://doi.org/10.1071/AN14339
Mamvura, C. I., S. Cho, D. T. Mbiriri, H. G. Lee, & N. J. Choi. 2014. Effect of encapsulating nitrate in sesame gum on in vitro rumen fermentation parameters. Asian-Australas. J. Anim. Sci. 27:1577–1583. https://doi.org/10.5713/ajas.2014.14280
Meller, R. A., B. A. Wenner, J. Ashworth, A. M. Gehman, J. Lakritz, & J. L. Firkins. 2019. Potential roles of nitrate and live yeast culture in suppressing methane emission and influencing ruminal fermentation, digestibility, and milk production in lactating Jersey cows. J. Dairy Sci. 102:6144–6156. https://doi.org/10.3168/jds.2018-16008
Nguyen, S. H., M. C. Barnett, & R. S. Hegarty. 2016. Use of dietary nitrate to increase productivity and reduce methane production of defaunated and faunated lambs consuming protein deficient chaff. Anim. Prod. Sci. 56:290–297. https://doi.org/10.1071/AN15525
Nolan, J. V., J. R. Newbold, I. R. Godwin, & R. S. Hegarty. 2016. Can adaptation to nitrate supplementation and provision of fermentable energy reduce nitrite accumulation in rumen contents in vitro. Anim. Prod. Sci. 56:605–612. https://doi.org/10.1071/AN15609
Olijhoek, D. W., A. L. F. Hellwing, M. Brask, M. R. Weisbjerg, O. Højberg, M. K. Larsen, & J. Dijkstra. 2016. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows. J. Dairy Sci. 99:1–15. https://doi.org/10.3168/jds.2015-10691
Özdemir, M., A. Eryavuz, G. Avci, Y. O. Birdane, & İ. Küçükkurt. 2014. Effects of supplementation of inorganic sulfur on some biochemical parameters in
Angora goat’s diet containing high nitrate levels. Turk. J. Vet. Anim. Sci. 38:526–533. https://doi.org/10.3906/vet-1406-11
Paengkoum, S., J. Khotsakdee, & P. Paengkoum. 2021. Nitrate supplementation of rations based on rice straw but not Pangola hay, improves growth performance in meat goats. Anim. Biosci. 34:1022–1028. https://doi.org/10.5713/ajas.20.0254
Pal, K., A. K. Patra, A. Sahoo, & N. M. Soren. 2015. Effects of nitrate and fumarate in tree leaves-based diets on nutrient utilization, rumen fermentation, microbial protein supply and blood profiles in sheep. Livest. Sci.172:5–15. https://doi.org/10.1016/j.livsci.2014.12.008
Patra, A. K. & Z. Yu. 2013. Effective reduction of enteric methane production by a combination of nitrate and saponin without adverse effect on feed degradability, fermentation, or bacterial and archaeal communities of the rumen. Bioresour. Technol. 148:352–360. https://doi.org/10.1016/j.biortech.2013.08.140
Powers, W. J., P. S. J. V. Adrichem, N. D. Paton, & H. B. Perdok. 2014. The effect of incremental levels of dietary nitrate on methane emissions in Holstein steers and performance in Nelore bulls. J. Anim. Sci. 92:5032–5040. https://doi.org/10.2527/jas.2014-7677
Rebelo, L. R., I. C. Luna, J. D. Messana, R. C. Araujo, T. A. Simioni, Y. T. Granja-salcedo, E. S. Vito, C. Lee, I. A. M. A. Teixeira, J. A. Rooke, & T. T. Berchielli. 2019. Effect of replacing soybean meal with urea or encapsulated nitrate with or without elemental sulfur on nitrogen digestion and methane emissions in feedlot cattle. Anim. Feed. Sci. Technol. 257:114293. https://doi.org/10.1016/j.anifeedsci.2019.114293
Sar, C., B. Mwenya, B. Pen, K. Takaura, R. Morikawa, A. Tsujimoto, K. Kuwaki, N. Isogai, I. Shinzato, Y. Asakura, Y. Toride, & J. Takahashi. 2005. Effect of ruminal administration of Escherichia coli wild type or a genetically modified strain with enhanced high nitrite reductase activity on methane emission and nitrate toxicity in nitrate-infused sheep. Br. J. Nutr. 94:691–697. https://doi.org/10.1079/BJN20051517
Sar, C., B. Santoso, Y. Gamo, T. Kobayashi, S. Shiozaki, K. Kimura, H. Mizukoshi, I. Arai, & J. Takahashi. 2002. Effects of combination of nitrate with β1-4 galacto-oligosaccharides and yeast (Candida kefyr) on methane emission from sheep. Asian-Australas. J. Anim. Sci. 17:73–79. https://doi.org/10.5713/ajas.2004.73
Silivong, P., T. R. Preston, & R. A. Leng. 2011. Effect of sulphur and calcium nitrate on methane production by goats fed a basal diet of molasses supplemented with Mimosa (Mimosa pigra) foliage. Livestock Research Rural Development 23:58.
Sinclair, K. B. & D. I. H. Jones. 1964. Nitrate toxicity in sheep. J. Sci. Food Agric. 15:717–721. https://doi.org/10.1002/jsfa.2740151010
Silveira, R. F., M. H. M. R. Fernandes, A. K. Almeida, R. C. Araujo, B. Biagioli, A. R. C. Lima, I. A. M. A. Teixeira, & K. T. Resende. 2019. Energy partition and nitrogen utilization by male goats fed encapsulated calcium nitrate as a replacement for soybean meal. Anim. Feed. Sci. Technol. 248:67–76. https://doi.org/10.1016/j.anifeedsci.2018.12.008
Simões, J. G., R. M. T. Medeiros, M. A. Medeiros, R. G. Olinda, A. F. M. Dantas, & F. Riet-Correa. 2018. Nitrate and nitrite poisoning in sheep and goats caused by ingestion of Portulaca oleracea. Pesquisa Veterinaria Brasileira 38:1549–1553. https://doi.org/10.1590/1678-5150-pvb-5550
Storm, I. M. L. D., A. L. F. Hellwing, N. I. Nielsen, & J. Madsen. 2012. Methods for measuring and estimating methane emission from ruminants. Animals. 2:160–183. https://doi.org/10.3390/ani2020160
Sun, Y. K., X. G. Yan, Z. B. Ban, H. M. Yang, R. S. Hegarty, & Y. M. Zhao. 2017. The effect of cysteamine hydrochloride and nitrate supplementation on in-vitro and in-vivo methane production and productivity of cattle. Anim. Feed. Sci. Technol. 232:49–56. https://doi.org/10.1016/j.anifeedsci.2017.03.016
Takahashi, I. & B. A. Young. 1991. Prophylactic effect of L-cysteine on nitrate-induced alterations in respiratory exchange and metabolic rate in sheep. Anim. Feed. Sci. Technol. 35:105-113. https://doi.org/10.1016/0377-8401(91)90103-Y
Takahashi, J., M. Ikeda, S. Matsuoka, & H. Fujita. 1998. Prophylactic effect of L-cysteine to acute and subclinical nitrate toxicity in sheep. Anim. Feed. Sci. Technol. 74:273–280. https://doi.org/10.1016/S0377-8401(98)00176-X
Tomkins, N., A. J. Parker, G. Hepworth, & M. J. Callaghan. 2016. Nitrate supplementation has marginal effects on enteric methane production from Bos indicus steers fed flinders grass (Iseilema spp.) hay, but elevates blood methemoglobin concentrations. Anim Prod. Sci. 58:262–270. https://doi.org/10.1071/AN16002
van Wyngaard, J. D. V., R. Meeske, & L. J. Erasmus. 2018. Effect of dietary nitrate on enteric methane emissions, production performance and rumen fermentation of dairy cows grazing kikuyu-dominant pasture during summer. Anim. Feed. Sci. Technol. 244:76–87. https://doi.org/10.1016/j.anifeedsci.2018.08.005
van Zijderveld, S. M. V., W. J. J. Gerrits, J. A. Apajalahti, J. R. Newbold, J. Dijkstra, & R. A. Leng. 2010. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93:5856–5866. https://doi.org/10.3168/jds.2010-3281
van Zijderveld, S. M. V., W. J. J. Gerrits, J. Dijkstra, J. R. Newbold, R. B. A. Hulshof, & H. B. Perdok. 2011. Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J. Dairy Sci. 94:4028–4038. https://doi.org/10.3168/jds.2011-4236
Velazco, J. I., D. J. Cottle, & R. S. Hegarty. 2014. Methane emissions and feeding behaviour of feedlot cattle supplemented with nitrate or urea. Anim. Prod. Sci. 54:1737–1740. https://doi.org/10.1071/AN14345
Veneman, J. B., S. Muetzel, K. J. Hart, C. L. Faulkner, M. Moorby, H. B. Perdok, & C. J. Newbold. 2015. Does dietary mitigation of enteric methane production affect rumen function and animal productivity in dairy cows ?. PloS One. 10:1–18. https://doi.org/10.1371/journal.pone.0140282
Villar, L., R. Hegarty, M. V. Tol, I. Godwin, & J. Nolan. 2020. Dietary nitrate metabolism and enteric methane mitigation in sheep consuming a protein deficient diet. Anim. Prod. Sci. 3:232–241. https://doi.org/10.1071/AN18632
Wang, R., M. Wang, E. M. Ungerfeld, X. M. Zhang, D. L. Long, H. X. Mao, J. P. Deng, A. Bannink, & Z. L. Tan. 2018. Nitrate improves ammonia incorporation into rumen microbial protein in lactating dairy cows fed a low-protein diet. J. Dairy Sci. 101:9789–9799. https://doi.org/10.3168/jds.2018-14904
Weichenthal, B., L. Bembry, R. J. Emirck, & F. W. Whetzal. 2020. Influence of sodium nitrate, vitamin A, and protein level on feedlot performance and vitamin A status of fattening cattle. J. Anim. Sci. 22: 979–984. https://doi.org/10.2527/jas1963.224979x
Zhao, L., Q. Meng, Y. Li, H. Wu, Y. Huo, X. Zhang, & Z. Zhou. 2018. Nitrate decreases ruminal methane production with slight changes to ruminal methanogen composition of nitrate- adapted steers. BMC Microbiol. 21:2018. https://doi.org/10.1186/s12866-018-1164-1
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.