Performance, Methane Emission, Nutrient Utilization, and the Nitrate Toxicity of Ruminants with Dietary Nitrate Addition: A Meta-analysis from In Vivo Trials

M. Abdelbagi, R. Ridwan, A. Fitri, Nahrowi, A. Jayanegara


This study aims to evaluate the effects of dietary nitrate addition on performance, methane emission, nutrient utilization, and the nitrate toxicity of ruminants by using the meta-analysis methodology from in vivo trials. A total of 38 published papers and 139 studies were used. Parameters observed were feed intake, animal performance, enteric methane emission, and nitrate toxicity. Data were subjected to the mixed model methodology. Nitrate doses or forms were treated as fixed factors, while the different studies were treated as random factors. Results revealed that nitrate supplementation significantly decreased the milk protein content, milk fat content, dry matter intake, gross energy intake, the molar proportion of the propionic acid, methane production, and the metabolism of vitamin A in a linear pattern (p<0.05). Moreover, nitrate addition significantly increased nitrate intake, the molar proportion of the acetic acid, the ratio of acetic acid to propionic acid, hydrogen molecule production, microbial protein synthesis, and nitrite blood levels (p<0.05). However, treatments did not affect the milk yield, final body weight, nitrate retention, and blood methemoglobin. There was a significant interaction among the animal types and the nitrate (forms and doses) on the milk protein content, dry matter intake, rumen pH value, total volatile fatty acids, the molar proportion of propionic acid, NH3 concentration, H2 molecule, microbial protein synthesis, metabolism of vitamin A, and the blood methemoglobin. This concludes that nitrate supplementation is an alternative feed additive for mitigating the enteric methane in ruminants without any adverse effects on animals’ health or performance despite its impact on the feed consumption rate.


Abdelbagi, M., R. Ridwan, Nahrowi, & A. Jayanegara. 2021. The Potential of Nitrate supplementation for modulating the fermentation pattern and mitigating methane emission in ruminants: A meta-analysis from in vitro experiments. IOP Conf. Ser. Earth Environ. Sci. 902:012023.
Alaboudit, A. R. & S. S. N. Receivedg. 1985. Effect of acclimation to high nitrate intakes on some rumen fermentation parameters in sheep. Can. J. Anim. Sci. 65:841-849.
Alemu, A. W., A. Romero-Perez, R. C. Araujo, & K. A. Beauchemin. 2019. Effect of encapsulated nitrate and microencapsulated blend of essential oils on growth performance and methane emissions from beef steers fed backgrounding diets. Animals. 9:21.
Anderson, R. C., W. Majak, A. Mark, Rassmussen, T. R. Callaway, R. C. Beier, D. J. Nisbet, & M. J. Allison. 2005. Toxicity and metabolism of the conjugates of 3-nitropropanol and 3-nitropropionic acid in forages poisonous to livestock. J. Agric. Food Chem. 53:2344–2350.
Arif, M., M. Sarwar, Mehr-Un-Nisa, Z. Hayat, & M. Younas. 2016. Effect of supplementary sodium nitrate and sulphur on methane production and growth rates in sheep and goats fed forage based diet low in true protein. J. Anim. Plant Sci. 26:69–78.
Asanuma, Narito, S. Yokoyama, & T. Hino. 2014. Effects of nitrate addition to a diet on fermentation and microbial populations in the rumen of goats, with special reference to selenomonas ruminantium having the ability to reduce nitrate and nitrite. Anim. Sci. J. 86:378–384.
de Raphélis-Soissan, V., L. Li, I. R. Godwin, M. C. Barnett, H. B. Perdok, & R. S. Hegarty. 2014. Use of nitrate and Propionibacterium acidipropionici to reduce methane emissions and increase wool growth of merino sheep. Anim. Prod. Sci. 54:1860–1866.
de Raphélis-Soissan, V., J. Nolan, I. R. Godwin, J. R. Newbold, H. B. Perdok, & R. S. Hegarty. 2017. Paraffin-wax-coated nitrate salt inhibits short-term methane production in sheep and reduces the risk of nitrite toxicity. Anim. Feed Sci. Technol. 229:57–64.
El-Zaiat, H. M., R. C. Araujo, Y. A. Soltan, A. S. Morsy, H. Louvandini, A. V. Pires, H. O. Patino, P. S. Correa, & A. L. Abdalla. 2014. Encapsulated nitrate and cashew nut shell liquid on blood and rumen constituents, methane emission, and growth performance of lambs. J. Anim. Sci. 92:2214–2224.
Farra, P. A. & L. D. Satter. 1971. Manipulation of the ruminal fermentation. III. Effect of nitrate on ruminal volatile fatty acid production and milk composition. J. Dairy Sci. 54:1018–1024.
Granja-Salcedo, Y. Tatiana, R. M. I. Fernandes, R. C. D. Araujo, L. T. Kishi, T. T. Berchielli, F. D. D. Resende, A. Berndt, & G. R. Siqueira. 2019. Long-term encapsulated nitrate supplementation modulates rumen microbial diversity and rumen fermentation to reduce methane emission in grazing steers. Front. Microbiol. 10:1–12.
Guo, W. S., D. M. Schaefer, X. X. Guo, L. P. Ren, & Q. X. Meng. 2009. Use of nitrate-nitrogen as a sole dietary nitrogen source to inhibit ruminal methanogenesis and to improve microbial nitrogen synthesis in vitro. Asian-Australas. J. Anim. Sci. 22:542–549.
Guyader, J., M. Eugène, M. Doreau, D. P. Morgavi, C. Gérard, C. Loncke, & C. Martin. 2018. Nitrate but not tea saponin feed additives decreased enteric methane emissions in nonlactating cows. J. Anim. Sci. 93:5367–5377.
Guyader, J., M. Eugène, B. Meunier, M. Doreau, D. P. Morgavi, M. Silberberg, Y. Rochette, C. Gerard, C. Loncke, & C. Martin. 2015. Additive methane-mitigating effect between linseed oil and nitrate fed to cattle. J. Anim. Sci. 93:3564–3577.
Guyader, J., M. Tavendale, C. Martin, & S. Muetzel. 2016. Dose-response effect of nitrate on hydrogen distribution between rumen fermentation end products: An in vitro approach. Anim. Prod. Sci. 56:224–230.
Hulshof, R. B. A., A. Berndt, W. J. J. Gerrits, J. Dijkstra, S. M. van Zijderveld, J. R. Newbold, & H. B. Perdok. 2012. Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. J. Anim. Sci. 90:2317–2323.
Klop, G., B. Hatew, A. Bannink, & J. Dijkstra. 2016. Feeding nitrate and docosahexaenoic acid affects enteric methane production and milk fatty acid composition in lactating dairy cows. J. Dairy Sci. 99:1161–1172.
Lee, C., R. C. Araujo, K. M. Koenig, & K. A. Beauchemin. 2017. Effects of encapsulated nitrate on growth performance, nitrate toxicity, and enteric methane emissions in beef steers: Backgrounding phase. J. Anim. Sci. 95:3700–3711.
Lee, C. & K. A. Beauchemin. 2014. A review of feeding supplementary nitrate to ruminant animals: nitrate toxicity, methane emissions, and production performance. Can. J. Anim. Sci. 94:557–570.
Li, L. A., J. B. Davis, J. A. Nolan, & R. A. Hegarty. 2012. An initial investigation on rumen fermentation pattern and methane emission of sheep offered diets containing urea or nitrate as the nitrogen source. Anim. Prod. Sci. 52:653–658.
Li, L., C. I. Silveira, J. V. Nolan, I. R. Godwin, R. A. Leng, & R. S. Hegarty. 2013. Effect of added dietary nitrate and elemental sulfur on wool growth and methane emission of Merino lambs. Anim. Prod. Sci. 53:1195–1201.
Lin, M., D. M. Schaefer, W. S. Guo, L. P. Ren, & Q. X. Meng. 2011. Comparisons of in vitro nitrate reduction, methanogenesis, and fermentation acid profile among rumen bacterial, protozoal and fungal fractions. Asian-Australas. J. Anim. Sci. 24:471–478.
Lin, M., D. M. Schaefer, G. Q. Zhao, & Q. X. Meng. 2013. Effects of nitrate adaptation by rumen inocula donors and substrate fiber proportion on in vitro nitrate disappearance, methanogenesis, and rumen fermentation acid. Animals. 7:1099–1105.
Lund, P., R. Dahl, H. J. Yang, A. L. F. Hellwing, B. B. Cao, & M. R. Weisbjerg. 2014. The acute effect of addition of nitrate on in vitro and in vivo methane emission in dairy cows. Anim. Prod. Sci. 54:1432–1435.
Mamvura, C. I., S. Cho, D. T. Mbiriri, H. G. Lee, & N. J. Choi. 2014. Effect of encapsulating nitrate in sesame gum on in vitro rumen fermentation parameters. Asian-Australas. J. Anim. Sci. 27:1577–1583.
Meller, R. A., B. A. Wenner, J. Ashworth, A. M. Gehman, J. Lakritz, & J. L. Firkins. 2019. Potential roles of nitrate and live yeast culture in suppressing methane emission and influencing ruminal fermentation, digestibility, and milk production in lactating Jersey cows. J. Dairy Sci. 102:6144–6156.
Nguyen, S. H., M. C. Barnett, & R. S. Hegarty. 2016. Use of dietary nitrate to increase productivity and reduce methane production of defaunated and faunated lambs consuming protein deficient chaff. Anim. Prod. Sci. 56:290–297.
Nolan, J. V., J. R. Newbold, I. R. Godwin, & R. S. Hegarty. 2016. Can adaptation to nitrate supplementation and provision of fermentable energy reduce nitrite accumulation in rumen contents in vitro. Anim. Prod. Sci. 56:605–612.
Olijhoek, D. W., A. L. F. Hellwing, M. Brask, M. R. Weisbjerg, O. Højberg, M. K. Larsen, & J. Dijkstra. 2016. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows. J. Dairy Sci. 99:1–15.
Özdemir, M., A. Eryavuz, G. Avci, Y. O. Birdane, & İ. Küçükkurt. 2014. Effects of supplementation of inorganic sulfur on some biochemical parameters in
Angora goat’s diet containing high nitrate levels. Turk. J. Vet. Anim. Sci. 38:526–533.
Paengkoum, S., J. Khotsakdee, & P. Paengkoum. 2021. Nitrate supplementation of rations based on rice straw but not Pangola hay, improves growth performance in meat goats. Anim. Biosci. 34:1022–1028.
Pal, K., A. K. Patra, A. Sahoo, & N. M. Soren. 2015. Effects of nitrate and fumarate in tree leaves-based diets on nutrient utilization, rumen fermentation, microbial protein supply and blood profiles in sheep. Livest. Sci.172:5–15.
Patra, A. K. & Z. Yu. 2013. Effective reduction of enteric methane production by a combination of nitrate and saponin without adverse effect on feed degradability, fermentation, or bacterial and archaeal communities of the rumen. Bioresour. Technol. 148:352–360.
Powers, W. J., P. S. J. V. Adrichem, N. D. Paton, & H. B. Perdok. 2014. The effect of incremental levels of dietary nitrate on methane emissions in Holstein steers and performance in Nelore bulls. J. Anim. Sci. 92:5032–5040.
Rebelo, L. R., I. C. Luna, J. D. Messana, R. C. Araujo, T. A. Simioni, Y. T. Granja-salcedo, E. S. Vito, C. Lee, I. A. M. A. Teixeira, J. A. Rooke, & T. T. Berchielli. 2019. Effect of replacing soybean meal with urea or encapsulated nitrate with or without elemental sulfur on nitrogen digestion and methane emissions in feedlot cattle. Anim. Feed. Sci. Technol. 257:114293.
Sar, C., B. Mwenya, B. Pen, K. Takaura, R. Morikawa, A. Tsujimoto, K. Kuwaki, N. Isogai, I. Shinzato, Y. Asakura, Y. Toride, & J. Takahashi. 2005. Effect of ruminal administration of Escherichia coli wild type or a genetically modified strain with enhanced high nitrite reductase activity on methane emission and nitrate toxicity in nitrate-infused sheep. Br. J. Nutr. 94:691–697.
Sar, C., B. Santoso, Y. Gamo, T. Kobayashi, S. Shiozaki, K. Kimura, H. Mizukoshi, I. Arai, & J. Takahashi. 2002. Effects of combination of nitrate with β1-4 galacto-oligosaccharides and yeast (Candida kefyr) on methane emission from sheep. Asian-Australas. J. Anim. Sci. 17:73–79.
Silivong, P., T. R. Preston, & R. A. Leng. 2011. Effect of sulphur and calcium nitrate on methane production by goats fed a basal diet of molasses supplemented with Mimosa (Mimosa pigra) foliage. Livestock Research Rural Development 23:58.
Sinclair, K. B. & D. I. H. Jones. 1964. Nitrate toxicity in sheep. J. Sci. Food Agric. 15:717–721.
Silveira, R. F., M. H. M. R. Fernandes, A. K. Almeida, R. C. Araujo, B. Biagioli, A. R. C. Lima, I. A. M. A. Teixeira, & K. T. Resende. 2019. Energy partition and nitrogen utilization by male goats fed encapsulated calcium nitrate as a replacement for soybean meal. Anim. Feed. Sci. Technol. 248:67–76.
Simões, J. G., R. M. T. Medeiros, M. A. Medeiros, R. G. Olinda, A. F. M. Dantas, & F. Riet-Correa. 2018. Nitrate and nitrite poisoning in sheep and goats caused by ingestion of Portulaca oleracea. Pesquisa Veterinaria Brasileira 38:1549–1553.
Storm, I. M. L. D., A. L. F. Hellwing, N. I. Nielsen, & J. Madsen. 2012. Methods for measuring and estimating methane emission from ruminants. Animals. 2:160–183.
Sun, Y. K., X. G. Yan, Z. B. Ban, H. M. Yang, R. S. Hegarty, & Y. M. Zhao. 2017. The effect of cysteamine hydrochloride and nitrate supplementation on in-vitro and in-vivo methane production and productivity of cattle. Anim. Feed. Sci. Technol. 232:49–56.
Takahashi, I. & B. A. Young. 1991. Prophylactic effect of L-cysteine on nitrate-induced alterations in respiratory exchange and metabolic rate in sheep. Anim. Feed. Sci. Technol. 35:105-113.
Takahashi, J., M. Ikeda, S. Matsuoka, & H. Fujita. 1998. Prophylactic effect of L-cysteine to acute and subclinical nitrate toxicity in sheep. Anim. Feed. Sci. Technol. 74:273–280.
Tomkins, N., A. J. Parker, G. Hepworth, & M. J. Callaghan. 2016. Nitrate supplementation has marginal effects on enteric methane production from Bos indicus steers fed flinders grass (Iseilema spp.) hay, but elevates blood methemoglobin concentrations. Anim Prod. Sci. 58:262–270.
van Wyngaard, J. D. V., R. Meeske, & L. J. Erasmus. 2018. Effect of dietary nitrate on enteric methane emissions, production performance and rumen fermentation of dairy cows grazing kikuyu-dominant pasture during summer. Anim. Feed. Sci. Technol. 244:76–87.
van Zijderveld, S. M. V., W. J. J. Gerrits, J. A. Apajalahti, J. R. Newbold, J. Dijkstra, & R. A. Leng. 2010. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93:5856–5866.
van Zijderveld, S. M. V., W. J. J. Gerrits, J. Dijkstra, J. R. Newbold, R. B. A. Hulshof, & H. B. Perdok. 2011. Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J. Dairy Sci. 94:4028–4038.
Velazco, J. I., D. J. Cottle, & R. S. Hegarty. 2014. Methane emissions and feeding behaviour of feedlot cattle supplemented with nitrate or urea. Anim. Prod. Sci. 54:1737–1740.
Veneman, J. B., S. Muetzel, K. J. Hart, C. L. Faulkner, M. Moorby, H. B. Perdok, & C. J. Newbold. 2015. Does dietary mitigation of enteric methane production affect rumen function and animal productivity in dairy cows ?. PloS One. 10:1–18.
Villar, L., R. Hegarty, M. V. Tol, I. Godwin, & J. Nolan. 2020. Dietary nitrate metabolism and enteric methane mitigation in sheep consuming a protein deficient diet. Anim. Prod. Sci. 3:232–241.
Wang, R., M. Wang, E. M. Ungerfeld, X. M. Zhang, D. L. Long, H. X. Mao, J. P. Deng, A. Bannink, & Z. L. Tan. 2018. Nitrate improves ammonia incorporation into rumen microbial protein in lactating dairy cows fed a low-protein diet. J. Dairy Sci. 101:9789–9799.
Weichenthal, B., L. Bembry, R. J. Emirck, & F. W. Whetzal. 2020. Influence of sodium nitrate, vitamin A, and protein level on feedlot performance and vitamin A status of fattening cattle. J. Anim. Sci. 22: 979–984.
Zhao, L., Q. Meng, Y. Li, H. Wu, Y. Huo, X. Zhang, & Z. Zhou. 2018. Nitrate decreases ruminal methane production with slight changes to ruminal methanogen composition of nitrate- adapted steers. BMC Microbiol. 21:2018.


M. Abdelbagi
R. Ridwan (Primary Contact)
A. Fitri
A. Jayanegara
AbdelbagiM., RidwanR., FitriA., Nahrowi, & JayanegaraA. (2023). Performance, Methane Emission, Nutrient Utilization, and the Nitrate Toxicity of Ruminants with Dietary Nitrate Addition: A Meta-analysis from In Vivo Trials. Tropical Animal Science Journal, 46(1), 74-84.

Article Details