In Vitro Evaluation of Feed Quality of Fermented Tithonia diversifolia with Lactobacillus bulgaricus and Persea americana miller Leaves as Forages for Goat

R. Pazla, N. Jamarun, Arief, Elihasridas, G. Yanti, E. M. Putri

Abstract

Fermented Tithonia diversifolia and Persea americana miller or avocado leaves as local alternative forages for goats are potential as protein, mineral, and energy sources. Therefore, this study aimed to evaluate the effect of fermented Tithonia diversifolia (FTD) and avocado leaves (AL) combination on in vitro nutrient digestibility, rumen fluid characteristics, and methane production. This study consisted of 3 trials. Trial 1 evaluated FTD’s nutrient content with Lactobacillus bulgaricus with different durations of fermentation arranged in a completely randomized design consisting of five treatments and four replications. The treatments were T. diversifolia without fermentation and fermentation of T. diversifolia for 2, 3, 4, and 5 days. Trial 2 was in vitro evaluation on different days of fermented T. diversifolia in a completely randomized design consisting of four treatments and four replications. Trial 3 was in vitro evaluation of FTD for 5 days and AL combination, which consisted of four combinations. FTDAL1 = 20% FTD+80% AL; FTDAL2 = 40% FTD+60% AL; FTDAL3 = 60% FTD+40% AL; and FTDAL4 = 80% FTD+20% AL. Experimental diets were incubated using Tilley and Terry method. Fermentation of T. diversifolia using L. bulgaricus significantly increased nutrient components (p<0.01), nutrient digestibility (p<0.01), and rumen fluid characteristics (p<0.05). In vitro evaluation of FTD and AL combination significantly increased nutrient digestibility, total volatile fatty acid, ammonia concentration, total gas production, and methane production (p<0.05), but insignificantly affected pH rumen fluid. It is concluded that the combination of 80% fermented T. diversifolia and 20% avocado leaves has the potential to increase dry matter, organic matter, crude protein, cellulose digestibility, and rumen fluid characteristics, but it is not optimum to decrease total gas and methane gas production.

References

Abdurachman, A. & S. Askar. 2000. Comparative Study of Total VFA Analysis with Distillation Methods and Gas Chromatography (in Indonesian title). Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Indonesia.
Adeleke, B. S., B. J. Akinyele, O. Olaniyi, & Y. Jeff-Agboola. 2017. Effect of Fermentation on chemical composition of cassava peels mannanase production view project mushroom enrichment view project. Asian J. Plant Sci. 7:31-38.
AOAC. 2005. Official Methods of Analysis. 18th ed. In Association of Official Analytical, Chemists International, Maryland, USA (Issue February).
Badan Pusat Statistik. 2018. Statistik Indonesia 2018. Badan Pusat Statistik, Jakarta.
Badan Pusat Statistik. 2020. Statistik Indonesia 2020. Badan Pusat Statistik, Jakarta.
Belanche, A., G. De la Fuente, J. M. Moorby, & C. J. Newbold. 2012. Bacterial protein degradation by different rumen protozoal groups. J. Anim. Sci. 90:4495–4504. https://doi.org/10.2527/jas.2012-5118
Bhatta, R., Y. Uyeno, K. Tajima, A. Takenaka, Y. Yabumoto, I. Nonaka, O. Enishi, & M. Kurihara. 2009. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92:5512–5522. https://doi.org/10.3168/jds.2008-1441
Bray, R. H. & L. T. Kurtz. 1945. Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 59:39–45. https://doi.org/10.1097/00010694-194501000-00006
Chen, L., A. Ren, C. Zhou, & Z. Tan. 2017. Effects of Lactobacillus acidophilus supplementation for improving in vitro rumen fermentation characteristics of cereal straws. Italian J. Anim. Sci. 16:52–60. https://doi.org/10.1080/1828051X.2016.1262753
Cieslak, A., P. Zmora, E. Pers-Kamczyc, & M. Szumacher-Strabel. 2012. Effects of tannins source (Vaccinium vitis idaea L.) on rumen microbial fermentation in vivo. Anim. Feed Sci. Technol. 176:102–106. https://doi.org/10.1016/j.anifeedsci.2012.07.012
Conway, B. E. J. & E. O Malley. 1942. Microdiffusion methods: Ammonia and urea using buffered absorbents (revised methods for ranges greater than 10 µg N). Biochem. J. 36:655–661. https://doi.org/10.1042/bj0360655
Davies, N. T. & R. Nightingale. 1975. The effects of phytate on intestinal absorption and secretion of zinc, and whole-body retention of Zn, copper, iron and manganese in rats. Br. J. Nutr. 34:243–258. https://doi.org/10.1017/S0007114575000293
de Evan, T., A. Vintimilla, E. Molina-alcaide, M. J. Ranilla, & M. D. Carro. 2020. Potential of recycling cauliflower and romanesco wastes in ruminant feeding: In vitro studies. Animals. 10:1–16. https://doi.org/10.3390/ani10081247
Fievez, V., O. J. Babayemi, & D. Demeyer. 2005. Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Anim. Feed Sci. Technol. 123-124. Part 1: 197–210. https://doi.org/10.1016/j.anifeedsci.2005.05.001
Folin, O. & V. Ciocalteau. 1927. On tyrosine and tryptophane in determinations in proteins. J. Biol. Chem. 73:627–648. https://doi.org/10.1016/S0021-9258(18)84277-6
Gbaguidi, G. & Z. Sariçiçek. 2021. Usability of some tropical plants as alternative roughage source in ruminant feeding. Black Sea Journal Agriculture 4:107–111. https://doi.org/10.47115/bsagriculture.873660
Goering, H. K. & P. J. Van Soest. 1970. Forage Fiber Analyses. (Apparatus, Reagents, Procedures, and Some Applications). In Agriculture Handbook No. 379. United States Department of Agriculture, Washington, DC (Issue 379).
Hasan, M. N., M. Z. Sultan, & M. Mar-E-Um. 2014. Significance of fermented food in nutrition and food science. J. Sci. Res. 6:373–386. https://doi.org/10.3329/jsr.v6i2.16530
Hendarto, D. R., A. P. Handayani, E. Esterelita, & Y. A. Handoko. 2019. Biochemistry mechanism and optimization Lactobacillus bulgaricus and Streptococcus thermophilus in processing quality yoghurt. Jurnal Sains Dasar 8: 13–19.
Jain, R. & V. Mudgal. 2021. Phosphorus deficiency influences rumen microbial activity: Review. Int. J. Zool. Animal. Biol. 4:1–9. https://doi.org/10.23880/IZAB-16000323
Jamarun, N., M. Zain, Arief, & R. Pazla. 2017. Populations of rumen microbes and the in vitro digestibility of fermented oil palm fronds in combination with tithonia (Tithonia diversifolia) and elephant grass (Pennisetum purpureum). Pak. J. Nutr. 17:39–45. https://doi.org/10.3923/pjn.2018.39.45
Jayanegara, A., E. Wina, C. R. Soliva, S. Marquardt, M. Kreuzer, & F. Leiber. 2011. Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. Anim. Feed Sci. Technol. 163:231–243. https://doi.org/10.1016/j.anifeedsci.2010.11.009
Johnson, K. A. & D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483–2492. https://doi.org/10.2527/1995.7382483x
Makmur, M., M. Zain, Y. Marlida, K. Khasrad, & A. Jayanegara. 2020. In vitro ruminal biohydrogenation of C18 fatty acids in mixtures of Indigofera zollingeriana and Brachiaria decumbens. J. Indones. Trop. Anim. Agric. 45:124–135. https://doi.org/10.14710/jitaa.45.2.124-135
Malaka, R. & A. Laga. 2005. Isolation and identification of Lactobacillus bulgaricus ropy strain from commercial yoghurt. Sains & Teknologi 5:50–58.
Marhaeniyanto, E., S. Susanti, B. Siswanto, & M. A. Trisna. 2019. Inventory activity of utilization plant leaves as source of protein on feeding of Etawah Crossbred Goat (case study in Prodosumbul Humlet, Klampok Village, Singosari District, Malang Regency). Ternak Tropika (Journal of Tropical Animal Production) 20:59–69. https://doi.org/10.21776/ub.jtapro.2019.020.01.8
Mauricio, R., L. H. Calsavara, R. S. Ribeiro, L. G. Pereira, D. S. Freitas, S. Domingos, R. Barahona, J. Rivera, J. Chará, & E. Murgueitio. 2017. Feeding ruminants using Tithonia diversifolia as forage. Journal Dairy Veterinary Animal Research 5:117–120. https://doi.org/10.15406/jdvar.2017.05.00146
McDougall, E. I. 1947. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem. J. 43:99–109. https://doi.org/10.1042/bj0430099
Mohamed, R. K., E. A. A. Arab, A. Y. Gibriel, N. M. H. Rasmy, & M. A. Ferial. 2011. Effect of legume processing treatments individually or in combination on their phytic acid content. African Journal of Food Science and Technology. 2:36–46.
Moran, J. B. 2005. Tropical Dairy Farming: Feeding Management for Small Holder Dairy Farmers in the Humid Tropics. Landlinks Press. https://doi.org/10.1071/9780643093133
Moss, A. R., J. P. Jouany, & J. Newbold. 2000. Methane Production by ruminants: its contribution to global warming. Ann. Zootechnol. 49:231–253. https://doi.org/10.1051/animres:2000119
Ningrat, R. W. S., M. Zain, Erpomen, E. M. Putri, & M. Makmur. 2019. Effects of Leucaena leucocephala supplementation to total mixed ration based on ammoniated rice straw onfiber digestibility and rumen fermentation characteristics in vitro. Int. J. Adv. Sci. Eng. Inf. Technol. 9:916–921. https://doi.org/10.18517/ijaseit.9.3.8009
Oluwasola, T. & F. A. Dairo. 2016. Proximate composition, amino acid profile and some anti-nutrients of Tithonia diversifolia cut at two different times. Afr. J. Agric. Res. 11:3659–3663. https://doi.org/10.5897/AJAR2016.10910
Osuga, I. M., S. A. Abdulrazak, C. I. Muleke, & T. Fujihara. 2012. Potential nutritive value of various parts of wild sunflower (Tithonia diversifolia) as source of feed for ruminants in Kenya. J. Food Agric. Environ. 10:632–635.
Patra, A. K. & J. Saxena. 2010. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 91:24–37. https://doi.org/10.1002/jsfa.4152
Pazla, R., N. Jamarun, F. Agustin, M. Zain, Arief, & N. O. Cahyani. 2020. Effects of supplementation with phosphorus, calcium and manganese during oil palm frond fermentation by Phanerochaete chrysosporium on ligninase enzyme activity. Biodiversitas 21:1833–1838. https://doi.org/10.13057/biodiv/d210509
Pazla, R., N. Jamarun, M. Zain, G. Yanti, & R. Chandra. 2021a. Quality evaluation of tithonia (Tithonia diversifolia) with fermentation using Lactobacillus plantarum and Aspergillus ficuum at different incubation times. Biodiversitas 22:3936–3942. https://doi.org/10.13057/biodiv/d220940
Pazla, R., N. Jamarun, F. Agustin, M. Zain, Arief, & N. O. Cahyani. 2021b. In vitro nutrient digestibility, volatile fatty acids and gas production of fermented palm fronds combined with tithonia (Tithonia diversifolia) and elephant grass (Pennisetum Purpureum). IOP Conf. Ser. Earth Environ. Sci. 888:1–8. https://doi.org/10.1088/1755-1315/888/1/012067
Pazla, R., G. Yanti, & N. Jamarun. 2021c. Degradation of phytic acid from Tithonia (Tithonia diversifolia) leaves using Lactobacillus bulgaricus at different fermentation times. Biodiversitas 22:4794–4798. https://doi.org/10.13057/biodiv/d221111
Pazla, R., N. Jamarun, L. Warly, G. Yanti, & N. A. Nasution. 2021d. Lignin content, ligninase enzyme activity and in vitro digestability of sugarcane shoots using pleurotus ostreatus and aspergillus oryzae at different fermentation times. Am. J. Anim. Vet. Sci. 16:192–201. https://doi.org/10.3844/ajavsp.2021.192.201
Pazla, R., N. Jamarun, M. Zain, A. Arief, G. Yanti, E. M. Putri, & R. H. Candra. 2022. Impact of Tithonia diversifolia and Pennisetum purpureum-based ration on nutrient intake, nutrient digestibility and milk yield of etawa crossbreed dairy goat. Int. J. Vet. Sci. 11:327–335. https://doi.org/10.47278/journal.ijvs/2021.119
Philippeau, C., A. Lettat, C. Martin, M. Silberberg, D. P. Morgavi, A. Ferlay, C. Berger, & P. Nozière. 2017. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high- or low-starch diets. J. Dairy Sci. 100:2637–2650. https://doi.org/10.3168/jds.2016-11663
Polyorach, S., M. Wanapat, A. Cherdthong, & S. Kang. 2016. Rumen microorganisms, methane production, and microbial protein synthesis affected by mangosteen peel powder supplement in lactating dairy cows. Trop. Anim. Health Prod. 48:593–601. https://doi.org/10.1007/s11250-016-1004-y
Puniya, A. K., R. Singh, & D. Kamra. 2015. Rumen Microbiology: From Evolution to Revolution. In Rumen Microbiology: From Evolution to Revolution. Springer. pp. 281-291. https://doi.org/10.1007/978-81-322-2401-3_19
Purkan, P., N. N. Laila, & S. Sumarsih. 2017. Lactobacillus bulgaricus as a Useful probiotic increasing the quality of tofu waste for earthworm feed. Jurnal Kimia Riset 2:1-9. https://doi.org/10.20473/jkr.v2i1.3688
Purwani, J. 2011. Pemanfaatan Tithonia diversifolia (Hamsley) a gray untuk perbaikan tanah dan produksi tanaman. Balai Penelitian Tanah 20:63–82.
Putri, E. M., M. Zain, L. Warly, & H. Hermon. 2019. In vitro evaluation of ruminant feed from West Sumatera based on chemical composition and content of rumen degradable and rumen undegradable proteins. Vet. World. 12:1478–1483. https://doi.org/10.14202/vetworld.2019.1478-1483
Putri, E. M., M. Zain, L. Warly, & H. Hermon. 2021. Effects of rumen-degradable-to-undegradable protein ratio in ruminant diet on in vitro digestibility, rumen fermentation, and microbial protein synthesis. Vet. World. 14:640–648. https://doi.org/10.14202/vetworld.2021.640-648
Ribeiro, R. S., S. A. Terry, J. P. Sacramento, S. R. E. Silveira, C. B. P. Bento, E. F. Da Silva, H. C. Mantovani, M. A. S. Da Gama, L. G. R. Pereira, T. R. Tomich, R. M. Maurício, & A. V. Chaves. 2016. Tithonia diversifolia as a supplementary feed for dairy cows. PLoS ONE 11:1–18. https://doi.org/10.1371/journal.pone.0165751
Sadarman, S., M. Ridla, N. Nahrowi, R. Ridwan, & A. Jayanegara. 2020. Evaluation of ensiled soy sauce by-product combined with several additives as an animal feed. Vet. World 13:940–946. https://doi.org/10.14202/vetworld.2020.940-946
Sharma, R., P. Garg, P. Kumar, S. K. Bhatia, & S. Kulshrestha. 2020. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation 6:1–20. https://doi.org/10.3390/fermentation6040106
Sripo, K., A. Phianmongkhol, & T. I. Wirjantoro. 2016. Effect of inoculum levels and final pH values on the antioxidant properties of black glutinous rice solution fermented by Lactobacillus bulgaricus. Int. Food Res. J. 23:2207–2213.
Sun, L., Z. Wang, G. Gentu, Y. Jia, M. Hou, & Y. Cai. 2019. Changes in microbial population and chemical composition of corn stover during field exposure and effect on silage fermentation and in vitro digestibility. Asian-Australas. J. Anim. Sci. 32:1854–1863. https://doi.org/10.5713/ajas.18.0886
Sutardi, T. 1980. Landasan Ilmu Nutrisi. Departemen Ilmu Nutrisi dan Makanan Ternak. Fakultas Peternakan IPB. Bogor.
Tan, N. D., M. Wanapat, S. Uriyapongson, A. Cherdthong, & R. Pilajun. 2012. Enhancing mulberry leaf meal with urea by pelleting to improve rumen fermentation in cattle. Asian-Australas. J. Anim. Sci. 25:452–461. https://doi.org/10.5713/ajas.2011.11270
Tilley, J. M. A. & R. A. Terry. 1963. A two‐stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 18:104–111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
Uddin, M. J., Z. H. Khandaker, M. J. Khan, & M .M. H. Khan. 2015. Dynamics of microbial protein synthesis in the rumen - A Review. Ann. Anim. Sci. 2:116–131.
Velarde, A. E. D., D. L. Pinzón Martínez, A. Z. Salem, P. G. M. García, & M. D. M.Berasain. 2018. Antioxidant and antimicrobial capacity of three agroindustrial residues as animal feeds. Agrofor. Syst. 94:1393–1402. https://doi.org/10.1007/s10457-018-00343-7
Yang, Chun-tao, S. Bing-wen, D. Qi-yu, J. Hai, Z. Shu-qin, & T. Yan. 2016. Rumen fermentation and bacterial communities in weaned Chahaer lambs on diets with different protein levels. J. Integr. Agric. 15:1564–1574. https://doi.org/10.1016/S2095-3119(15)61217-5
Yanti, G., N. Jamarun, Elihasridas, & T. Astuti. 2021. Quality improvement of sugarcane top as animal feed with biodelignification by phanerochaete chrysosporium fungi on in vitro digestibility of NDF, ADF, Cellulose and Hemicellulose. J. Physics: Conference Series. 1940: 012063. https://doi.org/10.1088/1742-6596/1940/1/012063
Zain, M., N. Jamarun, & N. Zulkarnaini. 2010. Effect of phosphorus and sulphur supplementation in growing beef cattle diet based on rice straw ammoniated. Asian J. Sci. Res. 3:184–188. https://doi.org/10.3923/ajsr.2010.184.188
Zain, M., E. M. Putri, R. W. S. Ningrat, Erpomen, & M. Makmur. 2020. Effects of supplementing Gliricidia sepium on ration based ammoniated rice straw in ruminant feed to decrease methane gas production and to improve nutrient digestibility (in-vitro). Int. J. Adv. Sci. Eng. Inf. Technol. 10:724–729. https://doi.org/10.18517/ijaseit.10.2.11242
Zhao, J., Z. Dong, J. Li, L. Chen, Y. Bai, Y. Jia, & T. Shao. 2018. Ensiling as pretreatment of rice straw: The effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion. Bioresour. Technol. 266:158–165. https://doi.org/10.1016/j.biortech.2018.06.058

Authors

R. Pazla
ronipazla@ansci.unand.ac.id (Primary Contact)
N. Jamarun
Arief
Elihasridas
G. Yanti
E. M. Putri
PazlaR., JamarunN., Arief, Elihasridas, YantiG., & PutriE. M. (2023). In Vitro Evaluation of Feed Quality of Fermented Tithonia diversifolia with Lactobacillus bulgaricus and Persea americana miller Leaves as Forages for Goat. Tropical Animal Science Journal, 46(1), 43-54. https://doi.org/10.5398/tasj.2023.46.1.43

Article Details

List of Cited By :

Crossref logo