Forage-Yield and Nutrient Quality of New Brown Midrib (BMR) Mutant Lines of Sorghum
Abstract
The objective of this study was to evaluate the yield, nutrient profile and in vitro digestibility of new BMR mutant lines of sorghum in Indonesia. These mutant lines were GH2.1, GH2.2, GH2.3, GH4.1, GH4.2, GH4.3 and GH4.4. One sorghum mutant line (CTY) and two national sorghum varieties (Super 1 and Bioguma) were also evaluated as controls. In vitro digestibility and rumen fermentation were measured using Ankom Daisy Fermenter and Hohenheim gas test methods, respectively. In vitro measurement consisted of ten treatments with five replications following a completely randomized design. The highest stem sugar content was found in Bioguma (11.22%) and GH4.4 (9.32%) (p<0.05). The Bioguma variety and the GH2.3 mutant line had a higher number of stem segments and fresh forage yield than the Super 1 variety (p<0.05). A greater concentration of crude protein (CP) was observed for the GH.2.1, GH2.2, GH2.3 and GH4.1 lines (p<0.05). The GH2.3 mutant line had the lowest acid detergent lignin (ADL) content (p<0.05), while Bioguma had the highest level of non-fibre carbohydrate (NFC) compounds (p<0.05). The highest relative feed value (RFV) was observed for the GH2.3 line (p<0.05). Furthermore, GH4.2 and GH2.3 had greater in vitro true digestibility (IVTD) (p<0.05) but were not significantly different from Bioguma. Regarding yield characteristics, nutrient composition and in vitro digestibility values, the highest values were found in the Bioguma variety and the GH2.3 mutant line. Except for n-valerate (nC5), significant differences in all rumen fermentation parameters were observed among sorghum cultivars (p<0.05). Regarding the interrelationship between parameters, we found a medium correlation of DMD with the ADL and cellulose content of sorghum forage (R2 = -0.489 and R2 = -0.674, respectively). Based on these findings, the GH2.3 BMR mutant line should be further developed as forage sorghum.
References
AOAC. 2012. Official Methods of Analysis of AOAC International. 19th Ed. Assoc. Off. Anal. Chem., Washington D.C.
Astigarraga, L., A. Bianco, R. Mello, & D. Montedónico. 2014. Comparison of brown midrib sorghum with conventional sorghum forage for grazing dairy cows. Am. J. Plant Sci. 5:955–962. https://doi.org/10.4236/ajps.2014.57108
Astuti, D., B. Suhartanto, N. Umami, & A. Irawan. 2019. Productivity, nutrient composition, and hydrocyanic acid concentration of Super-2 forage sorghum at different NPK levels and planting spaces. Trop. Anim. Sci. J. 42:189-195. https://doi.org/10.5398/tasj.2019.42.3.189
Ayaşan, T., N. Cetinkaya, S. Aykanat, & C. Celik. 2020a. Nutrient contents and in vitro digestibility of different parts of corn plant. S. Afr. J. Anim. Sci. 50:302–309. https://doi.org/10.4314/sajas.v50i2.13
Ayaşan, T., E. Sucu, I. Ülger, H. Hızlı, P. Cubukcu, & B. D. Özcan. 2020b. Determination of in vitro rumen digestibility and potential feed value of tiger nut varieties. S. Afr. J. Anim. Sci. 50:738–744. https://doi.org/10.4314/sajas.v50i5.12
Basaran, U., M. C. Dogrusoz, E. Gulumser, & H. Mut. 2017. Hay yield and quality of intercropped sorghum-sudan grass hybrid and legumes with different seed ratio. Turkish Journal Field Crops 22:47–53. https://doi.org/10.17557/tjfc.301834
Bean, B. W., R. L. Baumhardt, F. T. McCollum III, & K. C. McCuistion. 2013. Comparison of sorghum classes for grain and forage yield and forage nutritive value. Field Crops Res. 142:20–26. https://doi.org/10.1016/j.fcr.2012.11.014
De Aguilar, P. B., D. A. D. A Pires, B. C. B. Frota, J. A. S. Rodrigues, S. T. dos Reis, & V. R. R. Júnior. 2014. Nutritional characteristics of BMR mutant and normal sorghum genotypes used for cutting and grazing. Acta Sci. 36:259–264. https://doi.org/10.4025/actascianimsci.v36i3.21284
Faji, M., G. Kebede, F. Feyissa, K. Mohammed, M. Minta, S. Mengistu, & A. Tsegahun. 2021. Evaluation of ten perennial forage grasses for biomass and nutritional quality. Tropical Grasslands-Forrajes Tropicales 9:292–299. https://doi.org/10.17138/tgft(9)292-299
Godin, B., N. Nagle, S. Sattler, R. Agneessens, J. Delcarte, & E. Wolfrum. 2016. Improved sugar yields from biomass sorghum feedstocks : Comparing low ‑ lignin mutants and pretreatment chemistries. Biotechnol. Biofuels. 9:1–11. https://doi.org/10.1186/s13068-016-0667-y
Green, A. R., K. M. Lewis, J. T. Barr, J. P. Jones, F. Lu, J. Ralph, W. Vermerris, S. E. Sattler, & C. H. Kang. 2014. Determination of the structure and catalytic mechanism of sorghum bicolor caffeic acid O-Methyltransferase and the structural impact of three brown midrib12 mutations. Plant Physiol. 165:1440-1456. https://doi.org/10.1104/pp.114.241729
Jahansouz, M. R., R. K. Afshar, H. Heidari, & H. Masoud. 2014. Evaluation of yield and quality of sorghum and millet as alternative forage crops to corn under normal and deficit irrigation regimes. Jordan Journal Agricultural Science 10:699–714. https://doi.org/10.12816/0031747
Jayanegara, A., I. Ikhsan, & T. Toharmat. 2013. Assessment of methane estimation from volatile fatty acid stoichiometry in the rumen in vitro. J. Indones. Trop. Anim. Agric. 38:103–108. https://doi.org/10.14710/jitaa.38.2.103-108
Jayanegara, A., A. Sofyan, H. P. S. Makkar, & K. Becker. 2009. Kinetika produksi gas, kecernaan bahan organik dan produksi gas metana in vitro pada hay dan jerami yang disuplementasi hijauan mengandung tanin. Med. Pet. 32:120–129.
Kilic, U. & E. Gulecyuz. 2017. Effects of some additives on in vitro true digestibility of wheat and soybean straw pellets. Open Life Sci. 12:206–213. https://doi.org/10.1515/biol-2017-0024
Kondo, M., M. Yoshida, M. Loresco, R. M. Lapitan, J. R. V. Herrera, A. N. D. Barrio, Y. Uyeno, H. Matsui, & T. Fujihara. 2015. Nutrient contents and in vitro ruminal fermentation of tropical grasses harvested in wet season in the Philippines. Adv. Anim. Vet. Sci. 3:694–699. https://doi.org/10.14737/journal.aavs/2015/3.12.694.699
Li, Y., P. Mao, W. Zhang, X. Wang, Y. You, H. Zhao, L. Zhai, & G. Liu. 2015. Dynamic expression of the nutritive values in forage sorghum populations associated with white, green and brown midrid genotypes. Field Crops Res. 184:112–122. https://doi.org/10.1016/j.fcr.2015.09.008
Lyons, S. E., Q. M. Ketterings, G. S. Godwin, D. J. Cherney, J. H. Cherney, M. E. V. Amburgh, J. J. Meisinger, & T. F. Kilcer. 2019. Optimal harvest timing for brown midrib forage sorghum yield, nutritive value, and ration performance. J. Dairy Sci. 102:7134–7149. https://doi.org/10.3168/jds.2019-16516
McDonald, P., R. A. Edwards, J. F. D. Greenhalgh, C. A. Morgan, L. A. Sinclair, & R. G. Wilkinson. 2010. Animal Nutrition. 7th Ed. Pearson, London, UK.
Menke, K. H. & H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Animal Research and Development 28:7–55.
Miron, J., E. Zuckerman, D. Sadeh, G. Adin, M. Nikbachat, E. Yosef, D. Ben-Ghedalia, A. Carmi, T. Kipnis, & R. Solomon. 2005. Yield, composition and in vitro digestibility of new forage sorghum varieties and their ensilage characteristics. Anim. Feed Sci. Technol. 120:17–32. https://doi.org/10.1016/j.anifeedsci.2005.01.008
Perazzo, A. F., G. G. P. Carvalho, E. M. Santos, H. F. C. Bezerra, T. C. Silva, G. A. Pereira, R. C. S. Ramos, & J. A. S. Rodrigues. 2017. Agronomic evaluation of sorghum hybrids for silage production cultivated in semiarid conditions. Front. Plant Sci. 8:1–8. https://doi.org/10.3389/fpls.2017.01088
Puteri, R. E., P. D. M. H. Karti, L. Abdullah, & Supriyanto. 2015. Productivity and nutrient quality of some sorghum mutant lines at different cutting ages. Med. Pet. 38:132–137. https://doi.org/10.5398/medpet.2015.38.2.132
Qu, H., X. B. Liu, C. F. Dong, X. Y. Lu, & Y. X. Shen. 2014. Field performance and nutritive value of sweet sorghum in eastern China. Field Crops Res. 157:84–88. https://doi.org/10.1016/j.fcr.2013.12.010
Raju, J., J. Narasimha, N. N. Kumari, T. Raghunanadan, V. C. Preetam, A. A. Kumar, & P. R. Reddy. 2021. Effect of complete diets containing different dual-purpose sorghum stovers on nutrient utilization and growth performance in sheep. Small Rumin. Res. 201:106413. https://doi.org/10.1016/j.smallrumres.2021.106413
Rao, P. S., S. Deshpande, M. Blummel, B. Reddy, & C. Hash. 2012. Characterization of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). The European Journal Plant Science and Biotechnology 6:71–75.
Rohweder, D. A., R. F. Barnes, & N. Jorgensen. 1978. Proposed hay grading standards based on laboratory analyses for evaluating quality. J. Anim. Sci. 47:747–759. https://doi.org/10.2527/jas1978.473747x
Sajimin, S., N. D. Purwantari, S. Sarjiman, & Sihono S. 2017. Evaluation on performance of some Sorghum bicolor cultivars as forage resources in the dry land with dry climate. Jurnal Ilmu Ternak dan Veteriner 22:135–143. https://doi.org/10.14334/jitv.v22i3.1611
Sánchez-Duarte, J. I., K. F. Kalscheur, A. D. García, & F. Contreras-Govea. 2019. Short communication: Meta-analysis of dairy cows fed conventional sorghum or corn silages compared with brown midrib sorghum silage. J. Dairy Sci. 102:419–425. https://doi.org/10.3168/jds.2018-14552
Sattler, S. E., A. Saballos, Z. Xin, D. L. Funnell-harris, W. Vermerris, & J. F. Pedersen. 2015. Characterization of novel sorghum brown midrib mutants from an EMS-Mutagenized population. Agronomy & Horticulture 898:2116-2124. https://doi.org/10.1534/g3.114.014001
Scully, E. D., T. Gries, D. L. Funnell-harris, Z. Xin, F. A. Kovacs, W. Vermerris, & S. E. Sattler. 2016. Characterization of novel Brown midrib 6 mutations affecting lignin biosynthesis in sorghum. J. Integr. Plant Biol. 58:136–149. https://doi.org/10.1111/jipb.12375
Silungwe, D. 2011. Evaluation of forage yield and quality of sorghum, sudangrass and pearl millet cultivars in Manawatu. Master Thesis. Massey University, Palmerston North, New Zealand.
Sondakh, E. H. B., M. R. Waani, & J. A. D. Kalele. 2017. Changes in in vitro methane production and fatty acid profiles in response to cakalang fish oil supplementation. Med. Pet. 40:188–193. https://doi.org/10.5398/medpet.2017.40.3.188
Sriagtula, R., P. D. M. H. Karti, L. Abdullah, Supriyanto, D. A. Astuti, & Zurmiati. 2021. Nutrients, fiber fraction, and in vitro fiber digestibility of brown-midrib sorghum mutant lines affected by the maturity stages. Trop. Anim. Sci. J. 44:297–306. https://doi.org/10.5398/tasj.2021.44.3.297
Sriagtula, R., S. Sowmen, & Q. Aini. 2019. Growth and productivity of brown midrib sorghum mutant line Patir 3.7 (Sorghum bicolor L. Moench) treated with different levels of nitrogen fertilizer. Trop. Anim. Sci. J. 42:209–214. https://doi.org/10.5398/tasj.2019.42.3.209
Sriagtula, R., P. D. M. H. Karti, L. Abdullah, Supriyanto, & D. A. Astuti. 2017. Nutrient changes and in vitro digestibility in generative stage of M10-BMR sorghum mutant lines. Med. Pet. 40:111–117. https://doi.org/10.5398/medpet.2017.40.2.111
Steel, R. G. D. & J. H. Torrie. 1960. Principles and Procedures of Statistics. McGraw Hill Education, New York City, USA.
Su-jiang, Z., A. S. Chaudhry, D. Ramdani, A. Osman, G. Xue-feng, G. R. Edwards, & L. Cheng. 2016. Chemical composition and in vitro fermentation characteristics of high sugar forage sorghum as an alternative to forage maize for silage making in Tarim Basin, China. J. Integr. Agric. 15:175–182. https://doi.org/10.1016/S2095-3119(14)60939-4
Sugoro, I., K. G. Wiryawan, D. A. Astuti, & T. Wahyono. 2015. Gas production and rumen fermentation characteristics of buffalo diets containing by-product from some sorghum varieties. Jurnal Ilmu Ternak dan Veteriner 20:242–249. https://doi.org/10.14334/jitv.v20i4.1241
Van, S. P. J., J. B. Robertson, & B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Vietor, D. M., G. A. Rhodes, & W. L. Rooney. 2010. Relationship of phenotypic variation in sorghum to nutritive value of crop residues. Field Crops Res. 118:243–250. https://doi.org/10.1016/j.fcr.2010.06.001
Vinutha, K. S., H. Lokesh, G. S. Anil Kumar, P. V. Vadlani, & S. R. Pinnamaneni. 2018. Performance of bmr 6 and 12 sorghum mutants in different wild backgrounds under salinity. Sugar Tech. 20:293–304. https://doi.org/10.1007/s12355-017-0585-8
Wahyono, T., W. T. Sasongko, Y. Maharani, D. Ansori, T. Handayani, D. Priyoatmojo, & A. C. Trinugraha. 2021. Investigation of eighteen indonesian mutant rice straw varieties as ruminant roughage. Adv. Anim. Vet. Sci. 9:1757–1764. https://doi.org/10.17582/journal.aavs/2021/9.11.1757.1764
Wahyono, T., I. Sugoro, A. Jayanegara, K. G. Wiryawan, & D. A. Astuti. 2019. Nutrient profile and in vitro degradability of new promising mutant lines sorghum as forage in Indonesia. Adv. Anim. Vet. Sci. 7:810–818. https://doi.org/10.17582/journal.aavs/2019/7.9.810.818
Widiawati, Y. & A. Thalib. 2007. Comparison of fermentation kinetics (in vitro) of grass and shrub legume leaves: the pattern of VFA Concentration, estimated CH4 and microbial biomass production. Jurnal Ilmu Ternak dan Veteriner 2:21–27.
Zhong, R., Y. Fang, H. Sun, M. Wang, & D. Zhou. 2016. Rumen methane output and fermentation characteristics of gramineous forage and leguminous forage at differing harvest dates determined using an in vitro gas production technique. J. Integr. Agric. 15:414–423. https://doi.org/10.1016/S2095-3119(15)61036-X
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.