Post-Thaw Characteristics of the Simmental Sperm Function in Different Ages of Bulls
Abstract
This study aims to determine the effect of the age difference of Simmental bulls on motion characteristics, capacitation status, and DNA fragmentation of post-thawing sperms. The frozen semen used was collected from twelve bulls, which were divided into four groups of age, which include a group of two, four, ≥ 10 years old with high semen rejection (≥ 10 HR), and ≥ 10 years old with low semen rejection (≥ 10 LR). Computer Assisted Sperm Analysis (CASA) was used to determine sperm motion characteristics, capacitation status by chlortetracycline (CTC) staining, plasma membrane integrity, and viability using eosin-nigrosine staining. In contrast, the DNA fragmentation index was determined using the Sperm-Bos-halomax kit. The results showed that the four year old group had a higher total and progressive motility percentage than the others (p<0.05). In all groups, there was no significant difference among sperm kinematics such as VAP, VSL, VCL, STR, and ALH. However, the LIN, WOB, and BCF of the ≥ 10 HR year old groups were significantly lower (p<0.05) than those of the other groups. However, un-capacitated sperm was higher (p<0.05) in the two years and four years old groups compared to the ≥ 10 years old, while the four years old group had lower capacitated and acrosome-reacted (p<0.05) than the other groups. Furthermore, the sperm membrane integrity, viability, and DNA fragmentation index of the ≥ 10 years old groups were significantly higher (p<0.05) than those of the other groups. The research concludes that aging in the Simmental bull affects motion characteristics, capacitation status, and DNA fragmentation of post-thawing sperm. However, the semen rejection rate in the older bull did not directly affect the post-thawing sperm quality.
References
Ahmed, S., M. I-ur-R. Khan, M. Ahmad, & S. Iqbal. 2018. Effect of age on lipid peroxidation of fresh and frozen-thawed semen of Nili-Ravi buffalo bulls. Ital. J. Anim. Sci. 17:730-735. https://doi.org/10.1080/1828051X.2018.1424569
Aitken, R. J. 2020. Impact of oxidative stress on male and female germ cells: implications for fertility. Reproduction 159:189-201. https://doi.org/10.1530/REP-19-0452
Amaral, S., A. Amaral, & J. Ramalho-Santos. 2013. Aging and male reproductive function: a mitochondrial perspective. Front. Biosci. (Schol. Ed.). 5:181–197. https://doi.org/10.2741/S365
Amin, B. Y., J. K. Prasad, S. K. Ghosh, S. A. Lone, A. Kumar, A. R. Mustapha, O. Din, & A. Kumar. 2018. Effect of various levels of dissolved oxygen on reactive oxygen species and cryocapacitation‐like changes in bull sperm. Reprod. Domest. Anim. 53:1-8. https://doi.org/10.1111/rda.13200
Aslam, M. K. M., V. K. Sharma, S. Pandey, A. Kumaresan, A. Srinivasan, T. K. Datta, T. K. Mohanty, & S. Yadav. 2018. Identification of biomarker candidates for fertility in spermatozoa of crossbred bulls through comparative proteomics. Theriogenology 119:43-51. https://doi.org/10.1016/j.theriogenology.2018.06.021
Balic, I. M., S. Milinkuvic-tur, M. Samardzija, & S. Vince. 2012. Effect age and environmental factors on semen quality, glutathione peroxidase activity and oxidative parameters in simmental bulls. Theriogenology 78:423-431. https://doi.org/10.1016/j.theriogenology.2012.02.022
Belloc, S., A. Hazouta, A. Zini, P. Merviel, R. Cabry, H. Chahine, H. Copin, & M. Benkhalifa. 2014. How to overcome male infertility after 40: Influence of paternal age on fertility. Maturitas 78:22–29. https://doi.org/10.1016/j.maturitas.2014.02.011
Bhakat, M., T. K. Mohanty, V. S. Raina, A. K. Gupta, H. M. Khan, R. K. Mahapatra, & M. Sarkar. 2011. Effect of age and season on semen quality parameters in Sahiwal bulls. Trop. Anim. Health. Prod. 43:1161–1168. https://doi.org/10.1007/s11250-011-9817-1
Bhanmeechao, C., S. Srisuwatanasagul, & S. Ponglowhapan. 2018. Age-related changes in interstitial fibrosis and germ cell degeneration of the canine testis. Reprod. Domest. Anim. 53:37–43. https://doi.org/10.1111/rda.13354
Carreira, J. T., J. T. Trevizan, I. R. Carvalho, B. Kipper, L. H. Rodrigues, C. Silva, S. H. V. Perri, J. R. drevet, & M. B. Koivisto. 2007. Does sperm quality and DNA integrity differ in cryopreserved semen samples from young, adult, and aged Nellore bulls?. Basic. Clin. Androl. 27:12. https://doi.org/10.1186/s12610-017-0056-9
Castro, L. S., T. R. S. Hamilton, C. M. Mendes, M. Nichi, V. H. Barnabe, J. A. Visintin, & M. E. O. A. Assumpção. 2016. Sperm cryodamage occurs after rapid freezing phase: Flow cytometry approach and antioxidant enzymes activity at different stages of cryopreservation. J. Anim. Sci. Biotechnol. 7:17. https://doi.org/10.1186/s40104-016-0076-x
Collins, W. E., E. K. Inskeep, W. H. Dreher, W. J. Tyler, & L. E. Casida. 1962. Effect of age on fertility of bulls in artificial insemination. J. Dairy. Sci. 45:1015-1018. https://doi.org/10.3168/jds.S0022-0302(62)89545-9
Dalal, J., P. Kumar, R. K. Chandolia, S. Pawaria, R. Rajendran, S. Sheoran, J. Andonissamy, & D. Kumar. 2019. A new role for RU486 (mifepristone): It protects sperm from premature capacitation during cryopreservation in buffalo. Sci. Rep. 9:6712. https://doi.org/10.1038/s41598-019-43038-4
Dutta, S., A. Majzoub, & A. Agarwal. 2019. Oxidative stress and sperm function: A systematic review on evaluation and management. Arab. J. Urol. 17:87-97. https://doi.org/10.1080/2090598X.2019.1599624
Fernandez, J. L., L. Muriel, M. T. Rivero, V. Goyanes, R. Vazquez, & J. G. Alvarez. 2003. The sperm chromatin dispersion test: A simple method for the determination of sperm DNA fragmentation. J. Androl. 24:59-66.
Fraser, L. R., L. R. Abeydeera, & K. Niwa. 1995. Ca2+ regulating mechanisms that modulate bull sperm capacitation and acrosomal exocytosis as determined by chlortetracycline analysis. Mol. Reprod. Dev. 40:233-241. https://doi.org/10.1002/mrd.1080400213
Fuente-Lara, A., A. Hesser, B. Christensen, K. Gonzales, & S. Meyers. 2019. Effects from aging on semen quality of fresh and cryopreserved semen in Labrador Retrievers. Theriogenology 132:164-171. https://doi.org/10.1016/j.theriogenology.2019.04.013
Gunes, S., G. N. T. Hekim, M. A. Arslan, & R. Asci. 2016. Effects of aging on the male reproductive system. Journal of Assisted Reproduction and Genetics 33:441-454. https://doi.org/10.1007/s10815-016-0663-y
Hallap, T., M. Haard, U. Jaakma, B. Larsson, & H. Rodriguez-Martinez. 2004. Variations in quality of frozen–thawed semen from Swedish red and white AI sires at 1 and 4 years of age. Int. J. Androl. 27:166-171. https://doi.org/10.1111/j.1365-2605.2004.00470.x
Jiang, H., W-J. Zhu, J. Li, Q-J. Chen, W-B. Liang, & Y-Q. Gu. 2013. Quantitative histological analysis and ultrastructure of the aging human testis. Int. Urol. Nephrol. 46:879-885. https://doi.org/10.1007/s11255-013-0610-0
Jin, S-K. & W-X. Yang. 2017. Factors and pathways involved in capacitation: How are they regulated?. Oncotarget 8:3600-3627. https://doi.org/10.18632/oncotarget.12274
Johnson, L., J. S. Grumbles, A. Bagheri, & C. S. Petty. 1990. Increased germ cell degeneration during postprophase of meiosis is related to increase serum follicle-stimulating hormone concentration and reduce daily sperm production in aged men. Biol. Reprod. 42:281-287. https://doi.org/10.1095/biolreprod42.2.281
Kathiravan, P., J. Kalatharan, G. Karthikeya, K. Rengarajan, & G. Kadirvel. 2011. Objective sperm motion analysis to assess dairy bull fertility using computer-aided system: A review. Reprod. Domest. Anim. 46:165-172. https://doi.org/10.1111/j.1439-0531.2010.01603.x
Kipper, B. H., J. T. Trevizan, J. T. Carreira, I. R. Carvalho, G. Z. Mingoti, M. E. Beletti, S. H. V. Perri, D. A. Franciscato, J. C. Pierucci, & M. B. de Koivisto. 2016. Sperm morphometry and chromatin condensation in Nelore bulls of different ages and their effects on in vitro fertilization. Theriogenology 87:154-160. https://doi.org/10.1016/j.theriogenology.2016.08.017
Magdanz, V., S. Boryshpolets, C. Ridzewski, B. Eckel, & K. Reinhardt. 2019. The motility-based swim-up technique separates bull sperm based on differences in metabolic rates and tail length. PLoS ONE 14:e0223576. https://doi.org/10.1371/journal.pone.0223576
Moraes, C. R. & S. Meyers. 2018. The sperm mitochondrion: organelle of many functions. Anim. Reprod. Sci. 194:71-80. https://doi.org/10.1016/j.anireprosci.2018.03.024
Nagata, M. P. B., J. Egashira, N. Katafuchi, K. Endo, K. Ogata, K. Yamanaka, T. Yamanouchi, H. Matsuda, Y. Hashiyada, & K. Yamashita. 2019. Bovine sperm selection procedure prior to cryopreservation for improvement of post-thawed semen quality and fertility. J. Anim. Sci. Biotechnol. 10:91. https://doi.org/10.1186/s40104-019-0395-9
Oberoi, S. L. B., S. V. A. S. Kumar, & C. P. Talwar. 2014. Study of human sperm motility post cryopreservation. Med. J. Armed Forces India. 70:349-353. https://doi.org/10.1016/j.mjafi.2014.09.006
Oliveira, L. Z., R. P. de Arruda, A. F. C. de Andrade, E. C. C. Celeghini, P. D. Reeb, J. P. N. Martins, R. M. dos Santos, M. E. Beletti, R. F. G. Peres, F. M. Monteiro, & V. F. M. H. de Lima. 2013. Assessment of in vitro sperm characteristics and their importance in the prediction of conception rate in a bovine timed-AI program. Anim. Reprod. Sci. 137:145-155. https://doi.org/10.1016/j.anireprosci.2013.01.010
Ostermeier, G. C., C. Cardona, M. A. Moody, A. J. Simpson, R. Mendoza, E. Seaman, & A. J. Travis. 2018. Timing of sperm capacitation varies reproducibly among men. Mol. Reprod. Dev. 85:1-10. https://doi.org/10.1002/mrd.22972
Ozkosem, B., S. I. Feinstein, A. B. Fisher, & O’Flaherty. 2015. Advancing age increases sperm chromatin damage and impairs fertility in peroxiredoxin 6 null mice. Redox Biology 5:15-23. https://doi.org/10.1016/j.redox.2015.02.004
Park, Y-J., W-S. Kwon, S-A. Oh, & M-G. Pang. 2012. Fertility-related proteomic profiling bull spermatozoa separated by percoll. J. Proteome. Res. 11:4162-4168. https://doi.org/10.1021/pr300248s
Paul, C., M. Nagano, & B. Robaire. 2011. Aging results in differential regulation of DNA repair pathways in pachytene spermatocytes in the brown norway rat. Biol. Reprod. 85:1269-1278. https://doi.org/10.1095/biolreprod.111.094219
Pereira, R., R. Sá, A. Barros, & M. Sousa. 2017. Major regulatory mechanisms involved in sperm motility. Asian. J. Androl. 19:5–14.
Peris-Frau, P., A. J. Soler, M. Iniesta-Cuerda, A. Martín-Maestro, I. Sánchez-Ajofrín, D. A. Medina-Chávez, M. R. Fernández-Santos, O. García-Álvarez, A. Maroto-Morales, V. Montoro, & J. J. Garde. 2020. Sperm cryodamage in ruminants: understanding the molecular changes induced by the cryopreservation process to optimize sperm quality. Int. J. Mol. Sci. 21:2781. https://doi.org/10.3390/ijms21082781
Perumal, P., S. K. Srivastava, S. K. Ghosh, & K. K. Baruah. 2014. Computer-assisted sperm analysis of freezable and nonfreezable mithun (Bos frontalis) semen. Animals 2014:1-6. https://doi.org/10.1155/2014/675031
Piomboni, P., R. Focarelli, A. Stendardi, A. Ferramosca, & V. Zara. 2012. The role of mitochondria in energy production for human sperm motility. Int. J. Androl. 35:109-125. https://doi.org/10.1111/j.1365-2605.2011.01218.x
Rahman, M. S., W-S. Kwon, & M-G. Pang. 2014. Calcium influx and male fertility in the context of the sperm proteome: An update. Biomed. Res. Int. 2014:1-13. https://doi.org/10.1155/2014/841615
Rahman, M. S., W-S. Kwon, & M-G. Pang. 2017. Prediction of male fertility using capacitation-associated proteins in spermatozoa. Mol. Reprod. Dev. 84. https://doi.org/10.1002/mrd.22810
Rego, J. P. A., J. M. Martins, C. A. Wolf, M. van Tilburg, F. Moreno, A. C. Monteiro-Moreira, R. A. Moreira, D. O. Santos, & A. A. Moura. 2016. Proteomic analysis of seminal plasma and sperm cells and their associations with semen freezability in Guzerat bulls. J. Anim. Sci. 94:5308-5320. https://doi.org/10.2527/jas.2016-0811
Ryu, D-Y., W-H. Song, W-K. Pang, S-J. Yoon, M. S. Rahman, & M-G. Pang. 2019. Freezability biomarkers in bull epididymal spermatozoa. Sci. Rep. 9:12797. https://doi.org/10.1038/s41598-019-49378-5
Shojaei, H., T. Kroetsch, R. Wilde, P. Blondin, J. P. Kastelic, & J. C. Thundathil. 2012. Moribund sperm in frozen-thawed semen, and sperm motion end points post-thaw and post-swim-up, are related to fertility in Holstein AI bulls. Theriogenology 77:940-951. https://doi.org/10.1016/j.theriogenology.2011.09.026
Sloter, E., T. E. Schmid, F. Marchetti, B. Eskenazi, J. Nath, & A. J. Wyrobek. 2006. Quantitative effects of male age on sperm motion. Hum. Reprod. 21:2868–2875. https://doi.org/10.1093/humrep/del250
Tesi, M., G. Lazzarini, C. Magliaro, F. Abramo, D. Fanelli, V. Miragliotta, & A. Rota. 2020. Age-related changes of seminiferous tubule morphology, interstitial fibrosis and spermatogenesis in dogs. Anim. Reprod. Sci. 219:106534. https://doi.org/10.1016/j.anireprosci.2020.106534
Thundathil, J., J. Gil, A. Januskauskas, B. Larsson, L. Soderquist, R. Mapletoft, & H. Rodriguez-Martinez. 1999. Relationship between the proportion of capacitated spermatozoa present in frozen-thawed bull semen and fertility with artifcial insemination. Int. J. Androl. 22:366-373. https://doi.org/10.1046/j.1365-2605.1999.00194.x
Tourmente, M., P. Villar-Moya, E. Rial, & E. R. S. Roldan. 2015. Differences in ATP generation via glycolysis and oxidative phosphorylation and relationships with sperm motility in mouse species. J. Biol. Chem. 290:20613-20626. https://doi.org/10.1074/jbc.M115.664813
Valverde, A., V. Barquero, & C. Soler. 2020. The application of computer-assisted semen analysis (CASA) technology to optimise semen evaluation. A review. J. Anim. Feed. Sci. 29:189-198. https://doi.org/10.22358/jafs/127691/2020
Zhao, H., N. Ma, Q. Chen, X. You, C. Liu, T. Wang, D. Yuan, & C. Zhang. 2019. Decline in testicular function in ageing rats: changes in the unfolded protein response and mithocondrial apoptotic pathway. Exp. Gerontol. 127:110271. https://doi.org/10.1016/j.exger.2019.110721
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.