Estimation of Harvest Time of Forage Sorghum (Sorghum Bicolor) CV. Samurai-2 Using Decision Tree Algorithm

K. Suradiradja, I. S. Sitanggang, L. Abdullah, I. Hermadi

Abstract

Efforts to improve feed quality by adding additional nutritional supplements can increase production costs due to the increased concentrate prices. Therefore, one option is to combine the main feed with forages containing a high protein source at a low cost, such as Gramineae (e.g., sorghum). This study aims to estimate the harvest time of sorghum when the biomass content, nutrients, and digestibility for livestock are in good condition using a machine learning algorithm, namely a decision tree. The stages of this study include the collection of observation data in the field, preprocessing, modeling, evaluation, and validation. Images and field observations are the primary datasets used. These datasets become the model input for the decision tree algorithm. The results of this study are the classification model for estimating harvest time with an accuracy of 98.86% and the rule that is generated by the decision tree model, the right time to be harvested are in the condition (Day After Planting > 77.5 days AND Day After Planting ≤ 84 days AND Diameter > 26 mm) or (Day After Planting > 84 days AND Height ≤ 138.5 cm AND Leaves > 8.5 pieces) or (Day After Planting > 84 days AND Height > 138.5 cm). In conclusion, the rule generated from the decision tree algorithm can help estimate the fast harvest time of sorghum bicolor cv. Samurai 2.decision tree

References

Abdullah, L. 2010. Herbage yield and quality of two vegetative parts of Indigofera at different times of first regrowth defoliation. Med. Pet. 33:44–49. https://doi.org/10.5398/medpet.2010.33.3.169
Ardiansyah, K. G. Wiryawan, & P. D. M. H. Karti. 2016. Silage quality of sorghum harvested at different times and its combination with mixed legumes or concentrate evaluated in vitro. Med. Pet. 39:53-60. https://doi.org/10.5398/medpet.2016.39.1.53
Etuk E. B., A. V. Ifeduba, U. E. Okata, I. Chiaka, Okoli, C. Ifeanyi, N. J. Okeudo, B. O. Esonu, A. B. I. Udedibie, & J. C. Moreki. 2012. Nutrient composition and feeding value of sorghum for livestock and poultry: A review. J. Anim. Sci. Adv. 2:510-524.
Ghosal S., B. Zheng, S. C. Chapman, A. B. Potgieter, D. R. Jordan, X. Wang, A.K. Singh, A. Singh, M. Hirafuji, & S. Ninomiya. 2019. A weakly supervised deep learning framework for sorghum head detection and counting. Plant Phenomics. 2019:1–14. https://doi.org/10.34133/2019/1525874
Gorunescu, F. 2011. Data Mining Concepts, Models, and Techniques. 12th ed. Springer. https://doi.org/10.1007/978-3-642-19721-5
Han, J., M. Kamber, & J. Pei. 2012. Data Mining: Concepts and Techniques. 3rd ed. In Morgan Kaufmann Publishers.
Klompenburg, T., A. Kassahun, & C. Catal. 2020. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 177:105709. https://doi.org/10.1016/j.compag.2020.105709
Larose, D. T. 2014. Discovering Knowledge in Data: An Introduction to Data Mining. 2nd ed. John Willey and Son, Inc. https://doi.org/10.1002/9781118874059
Liakos, K. G., P. Busato, D. Moshou, D. Bochtis, & S. Pearson. 2018. Machine learning in agriculture: A review. Sensor. 18:2674. https://doi.org/10.3390/s18082674
Lyons, S. E., Q. M. Ketterings, G. S. Godwin, D. J. Cherney, J. H. Cherney, M. E. Amburgh, J. J. Meisinger, & T. F. Kilcer. 2019. Optimal harvest timing for brown midrib forage sorghum yield, nutritive value, and ration performance. J. Dairy Sci. 102:7134-7149. https://doi.org/10.3168/jds.2019-16516
Masjedi A., N. R. Carpenter, M. M. Crawford, M. R. Tuinstra. 2019. Prediction of Sorghum Biomass using UAV Time Series Data and Recurrent Neural Networks. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. pp. 2695–2702. https://doi.org/10.1109/CVPRW.2019.00327
Maxwell, A. E., T. A. Warner, & F. Fang. 2018. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 39:2784–2817. https://doi.org/10.1080/01431161.2018.1433343
McHugh, O., J. Liu, F. Browne, P. Jordan, & D. McConnell. 2020. Data-Driven Classifiers for Predicting Grass Growth in Northern Ireland: A Case Study. In Communications in Computer and Information Science. Vol. 1237 CCIS. Springer International Publishing. https://doi.org/10.1007/978-3-030-50146-4_23
Rocateli, A. C., R. L. Raper, K. S. Balkcom, F. J. Arriaga, & D. I. Bransby. 2012. Biomass sorghum production and components under different irrigation/tillage systems for the southeastern U.S. Ind. Crops Prod. 36:589–598. https://doi.org/10.1016/j.indcrop.2011.11.007
Sitanggang, I. S. & M. H. Ismail. 2011. Classification model for hotspot occurrences using a decision tree method. Geomat Nat. Hazards Risk. 2:111–121. https://doi.org/10.1080/19475705.2011.565807
Varela, S., T. Pederson, C. J. Bernacchi, & A. D. B. Leakey. 2021. Understanding growth dynamics and yield prediction of sorghum using high temporal resolution UAV imagery time series and machine learning. Remote Sens. 13:1763. https://doi.org/10.3390/rs13091763
Witten, I. H., E. Frank, M. A. Hall, & C. J. Pal. 2017. Data Mining: Practical Machine Learning Tools and Techniques. 4th ed. In The Morgan Kaufmann Series in Data Management Systems.

Authors

K. Suradiradja
kahfi.heryandi@apps.ipb.ac.id (Primary Contact)
I. S. Sitanggang
L. Abdullah
I. Hermadi
SuradiradjaK., SitanggangI. S., AbdullahL., & HermadiI. (2022). Estimation of Harvest Time of Forage Sorghum (Sorghum Bicolor) CV. Samurai-2 Using Decision Tree Algorithm. Tropical Animal Science Journal, 45(4), 436-442. https://doi.org/10.5398/tasj.2022.45.4.436

Article Details