Oocytes Population and Development Competence of Bali Cattle Embryo In Vitro with Different Ovarian Reproductive Statuses

H. Hasbi, H. Sonjaya, S. Gustina

Abstract

The present study aims to determine the potential of Bali cattle ovaries as sources of oocytes for in vitro embryo production based on different ovarian reproductive statuses. The ovaries were grouped into 4 categories: ovaries with no corpus luteum and dominant follicles (CL-DF-), those with corpus luteum and no dominant follicles (CL+DF-), those without corpus luteum but with dominant follicles (CL-DF+), and those with corpus luteum and dominant follicle (CL+DF+). The oocytes were collected via the slicing technique and grouped into 4 grades (a, b, c, and d). The oocyte’s maturation was performed using tissue culture medium 199 basic media. A drop sample (10–15 oocytes/drop) covered with mineral oil was then placed in a 5% CO2 incubator at a temperature of 38.5 ℃ for 24 h. Then, the samples were fertilized in 80 μL of fertilization medium with a final spermatozoa concentration of 1.5×106 spermatozoa/mL. After 5–6 h of in vitro fertilization, the oocytes were washed four times using the Charles Rosenkrans 1aa (CR1aa) medium. Then, the samples were cultured using the CR1aa as a base medium. The results showed no significant difference (p>0.05) for the 4 groups based on the oocyte population collected from one pair ovary as well as the number of oocytes that were suitable for maturation. However, group CL-DF+ showed a significant difference (p<0.05) in the rate of nuclear maturation (80.00±12.84), fertilization rate (80.00±4.72), and the ability of embryo development (60.19±22.45) when compared to group CL-DF-, CL+DF-, and CL+DF+. This study determines that the oocyte population of Bali cattle ovary pairs and oocytes quantity that are fit for maturation is not influenced by the reproductive status of the ovaries. However, the level of nuclear maturation, fertilization, and the ability of embryo development is higher in the ovaries without corpus luteum but with dominant follicles.

References

Abdoon, A. S. S. 2001. Factors affecting follicular population, oocyte yield and quality in camels (Camelus dromedaries) ovary with special reference to maturation time in vitro. Anim. Reprod. Sci. 66:71-79. https://doi.org/10.1016/S0378-4320(01)00078-1

Abdoon, A. S. S., C. Bagler, C. Holder, O. M. Kandil, & R. Einspainer. 2014. Seasonal variations in developmental competence and relative abundance of gene transcripts in buffalo (Bubalus bubalis) oocytes. Theriogenology 82:1055-1067. https://doi.org/10.1016/j.theriogenology.2014.07.008

Amer, H. A., A. O. Hegab, & S. M. Zaabal. 2008. Effects of ovarian morphology on oocyte quantity and quality, granulosa cells, in vitro maturation and steroid hormone production in buffaloes. Anim. Reprod. 5:55-62.

Arroyo, A., B. Kim, & J. Yeh. 2020. Luteinizing hormone action in human oocytes maturation and quality: signaling pathways, regulation, and clinical impact. Reprod. Sci. 27:1223-1252.. https://doi.org/10.1007/s43032-019-00137-x

Boediono, A. & M. A. Setiadi. 2006. Tingkat pematangan inti oosit domba dari ovarium dengan status reproduksi dan medium maturasi yang berbeda. HAYATI J. Biosci. 13:131-136. https://doi.org/10.1016/S1978-3019(16)30307-2

Boer, H. M. T., S. Roblitz, C. Stotzel, R. F. Veerkamp, B. Kemp, & H. Woelders. 2011. Mechanisms regulating follicle wave patterns in the bovine estrous cycle investigated with a mathematical model. J. Dairy Sci. 94:5987-6000. https://doi.org/10.3168/jds.2011-4400

Cheon, Y. 2012. Regulation and 3 dimensional culture of tertiary follicle growth. Clin. Exp. Reprod Med. 39:95-106. https://doi.org/10.5653/cerm.2012.39.3.95

Conti, M., M. Hsieh, A. M. Zamah, & J. S. Oh. 2012. Novel signaling mechanisms in the ovary during oocyte maturation and ovulation. Mol. Cell. Endocrinol. 356:65-73. https://doi.org/10.1016/j.mce.2011.11.002

Coticchio, G., M. C. Dal, M. R. Mignini, M. C. Guglielmo, F. Brambillasca, & D. Turchi. 2015. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum. Reprod. Update. 21:427–454. https://doi.org/10.1093/humupd/dmv011

Das, N. & T. R. Kumar. 2018. Molecular regulation of follicle-stimulating hormone synthesis, secretion and action. J. Mol. Endocrinol. 60:R131-R155. https://doi.org/10.1530/JME-17-0308

Davachi, N. D., H. Kohram, & S. Zeinoaldini. 2011. Effect of the presence of corpus luteum on the ovary and the new oocyte recovery method on the oocyte recovery rate and meiotic competence of ovine oocytes. Afr. J. Biotechnol. 10:9706-9709. https://doi.org/10.5897/AJB11.1725

Ferre, L. B., M. E. Kjelland, L. B. Strobech, P. Hyttel, P. Mermillod, & P. J. Ross. 2020. Review: recent advances in bovine in vitro embryos production: reproductive biotechnology history and methods. Animal 14:991-1004. https://doi.org/10.1017/S1751731119002775

Filippi, F., E. Somigliana, & A. Busnelli. 2020. The presence of dominant follicles and corpora lutea does not perturb response to controlled ovarian stimulation in random start protocols. Sci. Rep. 10:10083. https://doi.org/10.1038/s41598-020-67151-x

Gu, L., H. Liu, X. Gu, C. Boots, K. H. Moley, & Q. Wang. 2015. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell. Mol. Life Sci. 72:251-271. https://doi.org/10.1007/s00018-014-1739-4

Gustina, S., N. W. K. Karja, H. Hasbi, M. A. Setiadi, & I. Supriatna. 2019. Hydrogen peroxide concentration and DNA fragmentation of buffalo oocytes matured in sericin-supplementated maturation medium. S. Afr. J. Anim. Sci. 49: 227-234. https://doi.org/10.4314/sajas.v49i2.3

Hajarian, H., M. H. Shahsavari, H. Karami-shabankareh, & M. Dashtizad. 2016. The presence of corpus luteum may have a negative impact on in vitro developmental competency of bovine oocytes. Reprod. Biol. 16:47-52. https://doi.org/10.1016/j.repbio.2015.12.007

Hasbi, H., S. Gustina, N. W. K. Karja, I. Supriatna, & M. A. Setiadi. 2017. Insulin-like growth factor-I concentration in the follicular fluid of Bali cattle and its role in the oocyte nuclear maturation and fertilization rate. Med. Pet. 40:7-13. https://doi.org/10.5398/medpet.2017.40.1.7

He, M., T. Zhang, Y. Yang, & C. Wang. 2021. Mechanisms of oocytes maturation and related epigenetic regulation. Front Cell Dev. Biol. 9:654028. https://doi.org/10.3389/fcell.2021.654028

Hennet, M. L., & C. M. Combelles. 2012. The antral follicle: a microenvironment for oocyte differentiation. Int. J. Dev. Biol. 56:819-31. https://doi.org/10.1387/ijdb.120133cc

Imron, M., I. Supriatna, Amrozi, & M. A. Setiadi. 2016. Dinamika folikel dan repeatabilitas pertumbuhan gelombang folikel pada sapi

peranakan ongole (PO). Jurnal Ilmu Ternak dan Veteriner 21:26-33.

Kor, N. M. 2014. The effect of corpus luteum on hormonal composition of follicular fluid from different sized follicles and their relationship to serum concentrations in dairy cattle. Asian Pac. J. Trop. Med. 7S1:S282-S288. https://doi.org/10.1016/S1995-7645(14)60247-9

Krisher, R. L. 2004. The effect of oocyte quality on development. J. Anim. Sci. 82:E14-E23.

Laird, M., C. Glister, W. Cheewasopit, L. S. Satchell, A. B. Bicknell, & P. G. Knight. 2019. ‘Free’ inhibin α subunit is expressed by bovine ovarian theca cells and its knockdown suppresses androgen production. Sci. Rep. 9:19793. https://doi.org/10.1038/s41598-019-55829-w

Lee, S., H. G. Kang, P. S. Jeong, T. Nanjidsuren, B. S. Song, Y. B. Jin, S. R. Lee, S. U. Kim, & B. W. Sim. 2020. Effect of oocyte quality assessed by brilliant cresyl blue (BCB) staining on cumulus cell expansion and sonic hedgehog signaling in porcine during in vitro maturation. Int. J. Mol. Sci. 21:4423. https://doi.org/10.3390/ijms21124423

McGee, E. A. & A. J. Hsueh. 2000. Initial and cyclic recruitment of ovarian follicles. Endocr. Rev. 21:200-14. https://doi.org/10.1210/edrv.21.2.0394

Nagy, W. M., Sh. A. Gabr, H. K. Zaghloul, M. M. Salem, & S. A. El-fakhry. 2018. Effect of reproductive status on yield and in vitro maturation of oocytes of Egyptian sheep. Journal of Animal and Poultry Production. 9:463–470. https://doi.org/10.21608/jappmu.2018.41162

Paulini, F., R. C. Silva, & J. L. J. de Paula Rôlo. 2014. Ultrastructural changes in oocytes during folliculogenesis in domestic mammals. J. Ovarian Res. 7:102. https://doi.org/10.1186/s13048-014-0102-6

Penitente-Filho, J. M., E. Carrascal, F. A. Oliveira, A. M. Zolini, C. T. Oliveira, I. A. C. Soares, & C. A. A. Torres. 2014. Influence of dominant follicle and corpus luteum on recovery of good quality oocytes for in vitro embryo production in cattle. Br. Biotechnol. J. 4:1305-1312. https://doi.org/10.9734/BBJ/2014/13829

Penitente-Filho, J. M., C. R. Jimenez, A. M. Zolini, E. Carrascal, J. L. Azevedo, C. O. Silveira, F. A. Oliveira, & C. A. A. Torres. 2015. Influence of corpus luteum and ovarian volume on the number and quality of bovine oocytes. Anim. Sci. J. 86:148–152. https://doi.org/10.1111/asj.12261

Perera, B. M. A. O. 2011. Reproductive cycles of buffalo. Anim. Reprod. Sci. 124:194-199. https://doi.org/10.1016/j.anireprosci.2010.08.022

Pereira, G. R., P. L. Lorenzo, G. F. Carneiro, B. A. Ball, L. M. C. Pegoraro, C. A. Pimentel, & I. K. M. Liu. 2013. Influence of equine growth hormone, insulin-like growth factor-I and its interaction with gonadotropins on in vitro maturation and cytoskeleton morphology in equine oocytes. Animal. 7:1493–1499. https://doi.org/10.1017/S175173111300116X

Pirestani, A., S. M. Hosseini, M. Hajan, M. Forouzanfar, F. Moulavi, P. Abedi, H. Gourabi, A. Shahyerdi, A. V. T. Dizaj, & M. H. N. Esfahani. 2011. Effect of ovarian cyclic status on in vitro embryo production in cattle. Int. J. Fertil Steril. 4:172-175.

Price, C. A. & A. Estienne. 2018. The life and death of the dominant follicle. Anim. Reprod. 15:680-690. https://doi.org/10.21451/1984-3143-AR2018-0030

Regan, S. L. P., P. G. Knight, J. L. Yovich, Y. Leung, F. Arfuso, & A. Dharmarajan. 2018. Granulosa cell apoptosis in the ovarian follicle-A changing view. Front. Endocrinol. 9:61. https://doi.org/10.3389/fendo.2018.00061

Santella, L., N. Limatola, & J. T. Chun. 2020. Cellular and molecular aspects of oocyte maturation and fertilization: a perspective from the actin cytoskeleton. Zoological Lett. 6:5. https://doi.org/10.1186/s40851-020-00157-5

Shabankareh, H. K., M. H. Shahsavari, H. Hajarian, & G. Moghaddam. 2015. In vitro developmental competence of bovine oocytes: effect of corpus luteum and follicle size. Iran J. Reprod. Med. 13:615–622.

Xu, Y., M. H. Sun, Y. Xu, J. Q. Ju, M. H. Pan, & Z. N. Pan. 2020. Nonylphenol exposure affects mouse oocyte quality by inducing spindle defects and mitochondria dysfunction. Environ. Pollut. 266:114967. https://doi.org/10.1016/j.envpol.2020.114967

Authors

H. Hasbi
hasbi_fapetunhas@yahoo.com (Primary Contact)
H. Sonjaya
S. Gustina
HasbiH., Sonjaya H., & Gustina S. (2022). Oocytes Population and Development Competence of Bali Cattle Embryo In Vitro with Different Ovarian Reproductive Statuses. Tropical Animal Science Journal, 45(4), 389-396. https://doi.org/10.5398/tasj.2022.45.4.389

Article Details

List of Cited By :

Crossref logo