The Viabilities of Freeze-Thaw Pasundan-Bull Sperms After a Short-Term Exposure to Media with Different pHs
Abstract
External pH is crucial in preserving sperm viability and ensuring fertilization during in vitro conditions. The purpose of this study was to determine the maximum pH value that can be tolerated by frozen-thawed Pasundan bull sperms and the effect on sperm quality. Around 250x106 sperms/mL of frozen-thawed Pasundan bull sperms were divided into ten equal aliquots, and each was diluted in the medium within a particular pH value. HCL or NaOH was added to the buffer media to create ten different solutions with varying pH values of 3, 4, 5, 6 as acidic, 7.2-7.4 as a control, and 8, 9, 10, 11, and 12 as alkaline. Furthermore, the samples were incubated for 5 minutes at room temperature within a particular pH medium before being immediately supplemented with a buffered medium to achieve a pH of 7.2-7.4. After 10 minutes of incubation at room temperature, all parameters were assessed. The results showed that sperm motility, viability, normal morphology, and acrosome intactness in sperms incubated in the acidic or alkaline media were significantly lower compared to control (p<0.05, respectively). Interestingly, the sperm still had a good tolerance to pHs 6 and 8. This tolerance was evidenced by all the parameters of sperms that were not sharply decreased compared to the control group. The significant loss of motility occurred at pHs 3 and 12. It could be concluded that frozen-thawed Pasundan bull sperms are still tolerable in pHs 4-11, but the sperm quality degrades as the acidity or alkaline level increases.acidic
References
Arias, M., K. Andaraa, E. Brionesa & R. Felmera. 2017. Bovine sperm separation by Swim-up and density gradients (Percoll and BoviPure): Effect on sperm quality, function and gene expression. Reprod. Biol. 17:126–132. https://doi.org/10.1016/j.repbio.2017.03.002
Baharun, A., R. I. Arifiantini, & T. L Yusuf. 2017. Freezing capability of Pasundan bull sperm using tris egg yolk, tris soy and andromed diluent. J. Kedokt. Hewan. 11:45–49. https://doi.org/10.21157/j.ked.hewan.v11i1.5810
Berger, D., F. Abdel Hafez, H. Russell, J. Goldfarb, & N. Desai. 2011. Severe teratozoospermia and its influence on pronuclear morphology, embryonic cleavage and compaction. Reprod. Biol. Endocrinol. 9:1–7. https://doi.org/10.1186/1477-7827-9-37
Bhalakiya, N., N. Haque, D. Patel, A. Chaudhari, G. Patel, M. Madhavatar, P. Patel, S. Hossain, & R. Kumar. 2018. Sperm sexing and its application in livestock sector. International Journal of Current Microbiology and Applied Sciences (Special Issue-7):259–272.
Chen, L., Y. Ge, Y. Liang, & B. Yao. 2014a. Semen pH effects sperm motility and capacitation by influencing Na/K-ATPase activity and Ca concentration in spermoplasm. Transl. Androl. Urol. 3:AB185.
Chen, X., Y. Yue, Y. He, H. Zhu., H. Hao, X. Zhao, T. Qin, & D. Wang. 2014b. Identification and characterization of genes differentially expressed in X and Y sperm using suppression subtractive hybridization and cDNA microarray. Mol. Reprod. Dev. 81:908–917. https://doi.org/10.1002/mrd.22386
Contri, A., A. Gloria, D. Robbe, C. Valorz, L. Wegher, & A. Carluccio. 2013. Kinematic study on the effect of pH on bull sperm function. Anim. Reprod. Sci. 136:252–259. https://doi.org/10.1016/j.anireprosci.2012.11.008
Enciso, M., H. Cisale, S. D. Johnston, J. Sarasa, J. L. Fernández, & J. Gosálvez. 2011. Major morphological sperm abnormalities in the bull are related to sperm DNA damage. Theriogenology 76:23–32. https://doi.org/10.1016/j.theriogenology.2010.12.034
Ferramosca, A. & V. Zara. 2014. Review: Bioenergetics of mammalian sperm capacitation. Biomed. Res. Int. 2014:1–8. https://doi.org/10.1155/2014/902953
Hadi, S. 2019. Separation of Y-chromosome bearing ram’s sperms using an albumin gradient technique and identification of embryos by PCR. Al-Qadisiyah Journal of Veterinary Medicine Sciences 12:44-151. https://doi.org/10.29079/vol12iss1art243
Hall, J. & J. Glaze. 2014. Review: System application of sexed semen in beef cattle. The Professional Animal Scientist 30:279–284. https://doi.org/10.15232/S1080-7446(15)30118-2
Khalil, W. A., M. A. El-Harairy, A. E. B. Zeidan, M. A. E. Hassan, & O. Mohey-Elsaeed. 2018. Evaluation of bull spermatozoa during and after cryopreservation: Structural and ultrastructural insights. Int. J. Vet. Sci. Med. 6:S49–S56. https://doi.org/10.1016/j.ijvsm.2017.11.001
Kwon. W. S, Y. J. Park, E. S. A. Mohamed, & M. G. Pang. 2013. Voltage-dependent anion channels are a key factor of male fertility. Fertil. Steril. 99:354–361. https://doi.org/10.1016/j.fertnstert.2012.09.021
Liu, Q., T. Si, X. Xu, F. Liang, L. Wang, & S. Pan. 2015. Electromagnetic radiation at 900 MHz induces sperm apoptosis through bcl-2, bax and caspase-3 signaling pathways in rats. Reprod. Health. 12:1–9. https://doi.org/10.1186/s12978-015-0062-3
Mahdi, W. S., S. M. Al-Shamary, & Z. S. Jaafir. 2019. Role of spermatozoa in pH stability of caudal epididymis environment. Iraqi Journal of Veterinary Sciences 33:111–116. https://doi.org/10.33899/ijvs.2019.125511.1033
Mir, N & P. Kumar. 2012. Sperm sexing by flow cytometry –past improvements and future prospects: A review. Wayamba Journal of Animal Science 1322909353: 384–389.
Mbaye, M. M., B. El Khalfi, B. Addoum, P. D. Mar, B. Saadani, N. Louanjli, & A. Soukri. 2019. The effect of supplementation with some essential oils on the mobility and the vitality of human sperm. The Scientific World Journal 2019:1-6. https://doi.org/10.1155/2019/4878912
Mukhopadhyay, C. S., A. K. Gupta, B. R. Yadav, I. S. Chauhan, A. Gupta, T. K. Mohanty, & V. S. Raina. 2011. Effect of cryopreservation on sperm chromatin integrity and fertilizing potential in bovine semen. Livest. Sci. 136:114–121. https://doi.org/10.1016/j.livsci.2010.08.010
Nakano, F., R. Leão, & S. Esteves. 2015. Review: Insights into the role of cervical mucus and vaginal pH in unexplained infertility. Med Express. 2:1–8.
Naniwa, Y., S. Toda, & K. U. Maebashi. 2019. Bovine sperm sex-selection technology in Japan. Reprod. Med. Biol. 18: 17–26. https://doi.org/10.1002/rmb2.12235.
Noguchi, M., K. Yoshiokal, H. Hikono, G. Iwagami, C. Suzuki, & K. Kikuchi. 2014. Centrifugation on Percoll density gradient enhances motility, membrane integrity and in vitro fertilizing ability of frozen-thawed boar sperm. Zygote 23: 68–75: https://doi.org/10.1017/S0967199413000208
Nowicka-Bauer, K. & M. Szymczak-Cendlak. 2021. Structure and function of ion channels regulating sperm motility—An overview. Int. J. Mol. Sci. 22:1–24. https://doi.org/10.3390/ijms22063259
Oyeyipo, I., M. Linde, & S. Plessis. 2017. Environmental exposure of sperm sex-chromosomes : A Gender Selection Technique. Toxicol Res. 33:315–323. https://doi.org/10.5487/TR.2017.33.4.315
Pini, T., T. Leahy, & S. P. de Graaf. 2018. Sublethal sperm freezing damage: Manifestations and solutions. Theriogenology 118:172–181. https://doi.org/10.1016/j.theriogenology.2018.06.006
Said, T. M., A. Gaglani, & A. Agarwal. 2010. Implication of apoptosis in sperm cryoinjury. Reprod. Biomed. Online. 21:456–462. https://doi.org/10.1016/j.rbmo.2010.05.011
Salamone, D., N. Canel, & M. B. Rodriguez. 2017. ICSI in domestic and wild mammals. Reproduction. 154:F111–F124. https://doi.org/10.1530/REP-17-0357
Santoso, S., H. Herdis, R. I. Arifiantini, A. Gunawan, & C. Sumantri. 2021. Characteristics and potential production of frozen semen of Pasundan bull. Trop. Anim. Sci. J. 44:24–31. https://doi.org/10.5398/tasj.2021.44.1.24
Shukla, K. K., A. A. Mahdi, & S. Rajender. 2012. Review: Ion channels in sperm physiology and male fertility and infertility. J. Androl. 33:777–788. https://doi.org/10.2164/jandrol.111.015552
Sulasmi, S., A. Gunawan, R. Priyanto, C. Sumantri, & J. Arifin. 2017. Keseragaman dan kedekatan morfometrik ukuran tubuh Sapi Pasundan. Jurnal Veteriner 18:263–273. https://doi.org/10.19087/jveteriner.2017.18.2.263
Sullivan, R. & F. Saez. 2013. Review: Epididymosomes, prostasomes, and liposomes: Their roles in mammalian male reproductive physiology. Reproduction 146:R21–R35. https://doi.org/10.1530/REP-13-0058
Sumaryadi, M. Y., E. N. Setiawati, A. Triyanto, & V. Armelia. 2021. Morphometric characteristics and reproductive performance of Pasundan Cattle in the North Prianganese and Southern South Coast Region. Journal of Zoological Research 3:9–17. https://doi.org/10.30564/jzr.v3i2.3087
Sutarno, S. & A. D. Setyawan. 2015. Review: Genetic diversity of local and exotic cattle and their crossbreeding impact on the quality of Indonesian cattle. Biodiversitas 16: 327-54. https://doi.org/10.13057/biodiv/d160230
Sutarno, S. & A. D. Setyawan. 2015. Review: Genetic diversity of local and exotic cattle and their crossbreeding impact on the quality of Indonesian cattle. Biodiversitas 16: 327-54. https://doi.org/10.13057/biodiv/d160230
Suthutvoravut, S. & O. Kamyarat. 2016. Spermicidal effects of lemon juice and juices from other natural products. Agriculture and Natural Resources 50:133–138. https://doi.org/10.1016/j.anres.2015.09.004
Swain, J. E. 2012. Is there an optimal pH for culture media used in clinical IVF?. Hum. Reprod. Update. 18:333–339. https://doi.org/10.1093/humupd/dmr053
Tourmente, M., P. Villar-Moya, E. Rial, & E. R. S. Roldan. 2015. Differences in ATP generation via glycolysis and oxidative phosphorylation and relationships with sperm motility in mouse species. Journal of Biological Chemistry 290:20613–20626. https://doi.org/10.1074/jbc.M115.664813
Vasan, S. S. 2011. Semen analysis and sperm function tests: How much to test. Indian J. Urol. 27:41–48. https://doi.org/10.4103/0970-1591.78424
Widyastuti, R., H. Maheshwari, C. Sumantri, D. Pristihadi, N. M. D. Haq, W. Wahyudin, & A. Boediono. 2020. Deleterious effect of short time incubation at extreme pH to the morphology of frozen-thawed Pasundan bull sperm. Veterinary Practitioner 21:269–271.
Yadav, H., K. S. Sangram, A. L. Shabir, N. Shah, U. K. Verma, R. K. Baithalu, & T. K. Mohanty. 2018. Advances in sperm sexing in bovines. J. Exp. Zool. India. 21: 1–9.
Zhou, J., L. Chen, J. Li, H. Li, Z. Hong, M. Xie, & S. Chen. 2015. The semen pH affects sperm motility and capacitation. PLoS One 10:1–15. https://doi.org/10.1371/journal.pone.0132974
Zhu, Z., T. Kawai, T. Umehara, S. A. M. Hoque, W. Zeng, & M. Shimada. 2019. Negative effects of ROS generated during linear sperm motility on gene expression and ATP generation in boar sperm mitochondria. Free Radic. Biol. Med. 141:159–71. https://doi.org/10.1016/j.freeradbiomed.2019.06.018
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.