Somatic Embryogenesis and Plant Regeneration from the Apical Meristem of Wrukwona Napiergrass (Pennisetum purpureum) Treated with Thidiozuron and Cupric Sulfate
Abstract
This study focused on the effectiveness of somatic embryogenesis and regenerated plant in Wrukwona napiergrass. Previously, we studied in vitro propagation of 4 cultivars of napiergrass (Pennisetum purpureum) and showed that only 3.3% of Wrukwona cultivar formed embryogenic callus on day 30 and 21.7% on day 60 of incubation. To improve callus formation performance, it is necessary to develop a special propagation method for Wrukwona cultivar in terms of various growth regulators and additional compounds. This study used several rates of 2.4-dichlorophenoxyacetic acid (2.4-D), benzyl amino purine (BAP), and thidiozuron (TDZ). The result showed that the use of medium Murashige & Skoog (MS) with 2.4-D and BAP at a high ratio of 2.4-D, and TDZ 2 µM formed 78.6% embryogenic callus on day 60th and no albino was found in the regenerated plant. The best combination of growth promotor for embryogenic callus formation was 3 mg L-1 2.4-D, 0.5 mg L-1 BAP, and 2 µM TDZ. Callus proliferation with MS media added with 3 mg L-1 2.4-D, 0.5 mg L-1 BAP, 2 µM TDZ, and 5 µM CuSO4 gave the best proliferation results, with regeneration reaching 65%. All regenerants successfully grew in soil. It can be concluded that somatic embryogenesis of P. purpureum cv. Wrukwona can be produced from MS culture medium using 2 mg L-1 2.4-D, 0.5 mg L-1 BAP, and 2 µM TDZ. Effective multiplication was carried out by adding 5 µM CuSO4 to the same medium as the embryogenic callus formation, and effective regeneration was carried out with MS media containing 2 mg L-1 BAP.
References
AOAC. 2005. Oficial Methods of Analysis. AOAC International. 18th Ed. Assoc. Off. Anal. Chem, Airlington, USA.
Arsyam, A., Abdullah, & N. S. Said. 2017. Daya regenerasi kalus eksplan embrio kedelai (Glycine Max L.) pada berbagai konsentrasi hormon tumbuh 2.4 D dan BAP secara in vitro. AGrotekMAS Jurnal Indonesia: Jurnal Ilmu Pertanian 1:8–15.
Budisantoso, I., N. Amalia, & Kamsinah. 2017. In vitro callus induction from leaf explants of Vanda sp. stimulated by 2.4-D. Biosaintifika: Journal of Biology & Biology Education 9:492-497. https://doi.org/10.15294/biosaintifika.v9i3.11018
Dewir, Y. H., Nurmansyah, Y. Naidoo, & J. A. T. da Silva. 2018. Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep. 37:1451–1470. https://doi.org/10.1007/s00299-018-2326-1
Dwiyedi, K. K., A. Radhakrishna, & K. Pankaj. 2016. Optimization of callus induction and plant regeneration from germinating seeds of apomictic Cenchrus ciliaris L.(Poaceae). Range Management and Agroforesrry Journal 37:239-242.
Fiah, R. L., Taryono, & Toekidjo. 2014. Kemampuan regenerasi kalus empat klon tebu (Saccharum officinarum L.). Vegetalika 3:91–101.
Gondo, T., S. I. Tsuruta., R. Akashi, O. Kawamura, & F. Hoffmann. 2005. Green, herbicide-resistant plants by particle inflow gun-mediated gene transfer to diploid bahiagrass (Paspalum notatum). J. Plant Physiol. 162:1367–1375. https://doi.org/10.1016/j.jplph.2005.03.005
Gondo, T., G. Ishigaki, Y. Himuro, N. Umami, & R. Akashi. 2010. Improvement of forage quality by means of molecular breeding in tropical grasses. Angew. Chem. Int. Ed. 6: 951–952.
Gondo, T., N. Umami, M. Muguerza, & R. Akashi. 2017. Plant regeneration from embryogenic callus derived from shoot apices and production of transgenic plants by particle inflow gun in dwarf napier grass (Pennisetum purpureum Schumach.) Plant Biotechnol. J. 34:143–150. https://doi.org/10.5511/plantbiotechnology.17.0623a
Ishigaki, G., T. Gondo, K. Suenaga, & R. Akashi. 2011. Fertile trangenic Brachiaria ruziziensis (ruzigrass) plants by particle bombarment of tetraploidized callus. J. Plant Physiol. 169:546-549. https://doi.org/10.1016/j.jplph.2011.11.013
Ishigaki, G., T. Gondo, M. M. Rahman, N. Umami, & R. Akashi. 2014. Spontaneous appearance of polyploids in plants regenerated from embryogenic calli derived from seedling-meristems of ruzigrass (Brachiaria ruziziensis Germain et Everard). Grassl. Sci. 60:24-30. https://doi.org/10.1111/grs.12040
Ishii, Y., Y. Iki, K. Inoue. S. Nagata, S. Idota, M. Yokota, & A. Nishiwaki. 2016. Adaptability of napiergrass (Pennisetum purpureum Schumach.) for weed control in site of animals buried after foot-and-mouth disease infection. Scientifica 2016:1-8. https://doi.org/10.1155/2016/6532160
Kumar, S., N. Sahu, & A. Singh. 2015. High-frequency in vitro plant regeneration via callus induction in a rare sexual plant of Cenchrus ciliaris L. in vitro Cell. Dev. Biol. Plant. 51:28–34. https://doi.org/10.1007/s11627-015-9664-2
Lestari, E. G. 2011. Peranan zat pengatur tumbuh dalam perbanyakan tanaman melalui kultur jaringan. Jurnal AgroBiogen 7:63-68. https://doi.org/10.21082/jbio.v7n1.2011.p63-68
Lin, C. Y., B. S. Donohoe, N. Ahuja, D. M. Garrity, R. Qu, M. P. Tucker, M. E. Himmel, & H. Wei. 2017. Evaluation of parameters afecting switchgrass tissue culture: toward a consolidated procedure for agrobacterium-mediated transformation of switchgrass (Panicum virgatum). Plant Methods 13:113. https://doi.org/10.1186/s13007-017-0263-6
Maulana, R., D. P. Restanto, & S. Slameto. 2019. Pengaruh konsentrasi 2.4– dichlorophenoxyacetic acid (2.4-D) terhadap induksi kalus tanaman sorgum. Jurnal Bioindustri 1:138–148. https://doi.org/10.31326/jbio.v1i2.223
Murashige, T. & F. Skoog. 1962. A Revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Nurmaningrum, D., Y. Nurchayati, & N. Setiari. 2017. Alfalfa shoot’s micropropagation at combination of benzil amino purin (BAP) dan thidiazuron (TDZ). Buletin Anatomi dan Fisiologi 2:211–217. https://doi.org/10.14710/baf.2.2.2017.211-217
Pereira, A. V. C., L. G. E. Vieira, & A. F. Ribas. 2016. Optimal concentration of selective agents for inhibiting in vitro growth of Urochloa brizantha embryogenic calli. Afr. J. Biotechnol. 15:1159-1167.
Rahayu, B., Solichatun, & E. Anggarwulan. 2003. The effect of 2,4-dichlorophenoxyacetic acid (2,4-D) on callus growth and production flavonoid content on culture callus Acalypha indica L. Biofarmasi 1:1–6. https://doi.org/10.13057/biofar/f010101
Rengsirikul, K., Y. Ishii., K. Kangvansaichol, P. Sripichitt, V. Punsuvon, P. Vaithanomsat, G. Nakamanee, & S. Tudsri. 2013. Biomass yield, chemical composition and potential ethanol yields of 8 cultivars of napiergrass (Pennisetum purpureum Schumach.) harvested 3-monthly in central Thailand. J. Sustain. Bioenergy Syst. 03:107–112. https://doi.org/10.4236/jsbs.2013.32015
Saied, H. A., F. A. Beskii, & I. Askoul. 2014. Standardization of tissue culture protocols for callus induction and plant regeneration from mature embryo of sorghum (Sorghum bicolor L. Moench). Int. J. Chemtech Res. 6: 2710-2718.
Silva, R. C., Z. G. Luis, & J. E. Scherwinski-Pereira. 2012. Differential responses to somatic embryogenesis of different genotypes of Brazilian oil palm (Elaeis guineensis Jacq.). Plant Cell, Tissue Organ Cult. 111:59–67. https://doi.org/10.1007/s11240-012-0170-5
Sugito, H., Y. Santosa, & E. Sandra. 2006. Penggunaan thidiazuron, 2.4–D dan giberellin dalam pembentukan embrio somatik pule pandak (Rauvolfia serpentina (L.) Benth. ex Kurz) melalui kultur in vitro. Media Konservasi 11:66–71.
Suseno, N., N. Isnaini, B. Suwinyo, B. Suhartanto, & N. Umami. 2021. Callus induction and plant regeneration of Brachiaria grass from immature inflorescence explants. Buletin Peternakan 45:84-89
Umami, N., T. Gondo, G. Ishigaki, M. M. Rahman, & R. Akashi. 2012. Efficient nursery production and multiple-shoot clumps formation from shoot tiller-derived shoot apices of dwarf napiergrass (Pennisetum purpureum Schumach.). Journal of Warm Regional Society of Animal Science 55:121-127.
Umami, N., R. Akashi, T. Gondo, G. Ishigaki, & H. Tanaka. 2016. Study on callus induction system of 4 genotype of napiergrass (Pennisetum purpureum ). J. Anim Prod. 18:131-140. https://doi.org/10.20884/1.anprod.2016.18.3.528
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.