New Multi-Locus Sequence Typing of Mycoplasma hyorhinis Isolated from Pig Farms in Central Thailand

P. Fungwithaya, S. Samngamnim, S. Luengyosluechakul, P. Assavacheep

Abstract

Mycoplasma hyorhinis (M. hyorhinis) is an important pathogen in the pig industry, especially during the nursery period. Multi-locus sequence typing (MLST) is a specific method used to identify many bacterial species. At present, 108 MLST schemes of M. hyorhinis have been reported around the world. This study aimed to investigate the variable multi-locus sequence typing (MLST) schemes of M. hyorhinis in pig herds from bacterial stock at the large animal hospital, Faculty of Veterinary Science, Chulalongkorn University, since 2010. Bacteria were collected from 98 deceased pigs sent for autopsy at this veterinary hospital. Samples were collected from at least one lesion per pig located in the joint capsule, lung, thoracic cavity, abdominal cavity, and pericardium. Bacteria were cultured and confirmed the species by PCR. MLST was detected by PCR and DNA sequencing. Sequence data were reported to GenBank and PubMLST databases. In this study, the positive results of M. hyorhinis were found on 75 samples, while 23 samples gave negative results. The highest population of this pathogen was shown on the joint organ but no significant difference with the other organs. Only nine positive samples could be cultured, purified, and sent for sequencing. Sequencing results revealed 6 MLST schemes, while 5 of them were defined as new ST types (ST71-75) defined for the first time in Thailand. A diverse array of MLST in this location, some of which are novel, implied that bacteria might adapt to their environment. MLST information might play a role in vaccine development and preventative strategies.

References

Bayatzadeh, M. A., S. A. Pourbakhsh, A. Ashtari, A. R. Abtin, & M. Abdoshah. 2014. Molecular typing of Iranian field isolates Mycoplasma synoviae and their differentiation from the live commercial vaccine strain MS-H using vlhA gene. Br. Poult. Sci. 55:148-56. https://doi.org/10.1080/00071668.2013.878781
Bubnov, D. M., T. V. Yuzbashev, A. S. Fedorov, F. V. Bondarenko, A. S. Savchenko, T. V. Vybornaya, S. S. Fillippova, & S. P. Sineoky. 2020. Glutamyl- and Glutaminyl-tRNA synthetases are a promising target for the design of an L-Threonine–producing strain. Appl. Biochem. Biotechnol. 56:837-846. https://doi.org/10.1134/S0003683820080037
Chen, D., Y. Wei, L. Huang, Y. Wang, J. Sun, W. Du, H. Wu, & C. Liu. 2016. Synergistic pathogenicity in sequential coinfection with Mycoplasma hyorhinis and porcine circovirus type 2. Vet. Microbiol. 182:123-30. https://doi.org/10.1016/j.vetmic.2015.11.003
Cibulski, S. P., F. M. Siqueira, T. F. Teixeira, F. Q. Mayer, L. G. Aalmeida, & P. M. Roehe. 2016. Genome sequence of Mycoplasma hyorhinis isolated from cell cultures. Genome Announc. 4:e01119-16. https://doi.org/10.1128/genomeA.01119-16
Clavijo, M. J., D. Murray, S. Oliveira, & A. Rovira. 2017. Infection dynamics of Mycoplasma hyorhinis in three commercial pig populations. Vet. Rec. 181:68. https://doi.org/10.1136/vr.104064
Clavijo, M. J., S. Sreevatsan, T. J. Johnson, & A. Rovira. 2019. Molecular epidemiology of Mycoplasma hyorhinis porcine field isolates in the United States. PLoS One 14:1-13. https://doi.org/10.1371/journal.pone.0223653
Ennis, R. S., D. Dalgard, J. T. Willerson, J. A. Barden, & J. L. Decker. 1971. Mycoplasma hyorhinis swine arthritis. II. Morphologic features. Arthritis Rheum. 14:202-211. https://doi.org/10.1002/art.1780140203
ICT (Information and Communication Technology Center). 2021. The population of pig farms in Thailand, 2019. http://ict.dld.go.th/webnew/index.php/th/service-ict/report/323-report-thailand-livestock/reportservey2562/1372-2562-prov. [Retrieved on 31 July 2021].
Jang, J., K. Kim, S. Park, B. Park, H. Um, M. Coulier, & T. W. Hahn. 2016. In vitro antibiotic susceptibility of field isolates of Mycoplasma hyopneumoniae and Mycoplasma hyorhinis from Korea. Korean J. Vet. Res. 56:109-111. https://doi.org/10.14405/kjvr.2016.56.2.109
Kobayashi, H., T. Morozumi, C. Miyamoto, M. Shimizu, S. Yamada, S. Ohashi, M. Kubo, K. Kimura, K. Mitani, N. Ito, & K. Yamamoto. 1996. Mycoplasma hyorhinis infection levels in lungs of piglets with porcine reproductive and respiratory syndrome (PRRS). J. Vet. Med. Sci. 58:109-113. https://doi.org/10.1292/jvms.58.109
Lee, J. A., Y. R. Oh, M. A. Hwang, J. B. Lee, S. Y. Park, C. S. Song, I. S. Choi, & S. W. Lee. 2016. Mycoplasma hyorhinis is a potential pathogen of porcine respiratory disease complex that aggravates pneumonia caused by porcine reproductive and respiratory syndrome virus. Vet. Immunol. Immunopathol. 177:48-51. https://doi.org/10.1016/j.vetimm.2016.06.008
Lekagul, A., V. Tangcharoensathien, A. Mills, J. Rushton, & S. Yeung. 2020. How antibiotics are used in pig farming: a mixed-methods study of pig farmers, feed mills and veterinarians in Thailand. BMJ glob. Health. 5:e001918. https://doi.org/10.1136/bmjgh-2019-001918
Luehrs, A., S. Siegenthaler, N. Grutzner, G. E. Beilage, P. Kuhnert, & H. Nathues. 2017. Occurrence of Mycoplasma hyorhinis infections in fattening pigs and association with clinical signs and pathological lesions of Enzootic Pneumonia. Vet. Microbiol. 203:1-5. https://doi.org/10.1016/j.vetmic.2017.02.001
Maes, D., F., Boyen, F. Haesebrouck, & A. V. Gautier-Bouchardon. 2020. Antimicrobial treatment of Mycoplasma hyopneumoniae infections. Vet. J. 259-260:105474. https://doi.org/10.1016/j.tvjl.2020.105474
Magnan, D. & D. Bates. 2015. Regulation of DNA replication initiation by chromosome structure. J. Bacteriol. 197:3370-3377. https://doi.org/10.1128/JB.00446-15
Makhanon, M., P. Tummarak, P. Thongkamkoon, R. Thanawongnuwech, & N. Prapasarakul. 2012. Comparison of detection procedures of Mycoplasma hyopneumoniae, Mycoplasma hyosynoviae, and Mycoplasma hyorhinis in lungs, tonsils, and synovial fluid of slaughtered pigs and their distributions in Thailand. Trop. Anim. Health Prod. 44:313-318. https://doi.org/10.1007/s11250-011-0022-z
Neto, J. C. G., P. Gauger, E. Strait, N. Boyes, D. Madson, & K. Schwartz. 2012. Mycoplasma-associated arthritis: Critical points for diagnosis. J. Swine Health Prod. 20:82-86. https://www.aasv.org/jshap/issues/v20n2/v20n2p82.pdf. [30 July 2021].
O’Dea, M. H., J. K. Tamura, & M. Gellert. 1996. Mutations in the B subunit of Escherichia coli DNA gyrase that affect ATP-dependent reactions. J. Biol. Chem. 271:9723-9729. https://doi.org/10.1074/jbc.271.16.9723
Switzer, W. P. 1955. Studies on infectious atrophic rhinitis. IV. Characterization of a pleuropneumonia-like organism isolated from the nasal cavities of swine. Am. J. Vet. Res. 16:540 (Abstr.). https://www.cabi.org/isc/abstract/19562202234. [30 July 2021].
Trouchon, T. & L. Sébastien. 2016. A review of enrofloxacin for veterinary use. Open J. Vet. Med. 6:40-58. https://hal.archives-ouvertes.fr/hal-01503397/document. [30 July 2021]. https://doi.org/10.4236/ojvm.2016.62006
Trueb, B., E. Catelli, A. Luehrs, H. Nathues, & P. Kuhnert. 2016. Genetic variability and limited clonality of Mycoplasma hyorhinis in pig herds. Vet. Microbiol. 191:9-14. https://doi.org/10.1016/j.vetmic.2016.05.015
Urwin, R. & M. C. Maiden. 2003. Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol. 11:479-487. https://doi.org/10.1016/j.tim.2003.08.006
Xu, Y., H. Li, W. Chen, X. Yao, Y. Xing, X. Wang, J. Zhong, & G. Meng. 2013. Mycoplasma hyorhinis activates the NLRP3 inflammasome and promotes migration and invasion of gastric cancer cells. PLoS One 8:e77955. https://doi.org/10.1371/journal.pone.0077955

Authors

P. Fungwithaya
punpichaya.fu@mail.wu.ac.th (Primary Contact)
S. Samngamnim
S. Luengyosluechakul
P. Assavacheep
FungwithayaP., SamngamnimS., LuengyosluechakulS., & AssavacheepP. (2022). New Multi-Locus Sequence Typing of Mycoplasma hyorhinis Isolated from Pig Farms in Central Thailand. Tropical Animal Science Journal, 45(2), 164-172. https://doi.org/10.5398/tasj.2022.45.2.164

Article Details