Genetic Association and Expression of JHDM1A Gene Related to Meat pH in Commercial Pigs
Abstract
An experiment was conducted to study the association and expression of JHDM1A gene as a candidate gene for meat quality. The polymorphism was genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using restriction enzyme on a total of 300 muscle samples of [Duroc × (Large White × Landrace)] pigs. Results showed that JHDM1A gene was significantly associated with meat pH 45 min post-mortem (p.m.) (p<0.05). Allele frequencies for G and C were 0.53 and 0.47. The genotype frequencies for GG, GC, and CC were 0.24, 0.58, and 0.18, respectively. The Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) study were analyzed between low and high pH 45 min p.m. groups (n=10 per group) according to the association result. JHDM1A expression was higher in animals with a low post-mortem meat pH 45 min (p<0.05). Therefore, polymorphism and expression in the porcine JHDM1A gene might be the important candidate genes to improve meat quality traits in terms of meat pH.
References
Akşit, M., S. Yalçin, S. Özkan, K. Metin, & D. Özdemir. 2006. Effects of temperature during rearing and crating on stress parameters and meat quality of broilers. Poult. Sci. 85:1867-1874. https://doi.org/10.1093/ps/85.11.1867
Campos, G. S., B. P. Sollero, F. A. Reimann, V. S. Junqueira, L. L. Cardoso, M. J. I. Yokoo, A. A. Boligon, J. Braccini, & F. F. Cardoso. 2020. Tag‐SNP selection using Bayesian genomewide association study for growth traits in Hereford and Braford cattle. J. Anim. Breed. Genet. 137:449-467. https://doi.org/10.1111/jbg.12458
Choe, J., Y. Choi, & S. Lee. 2009. The relation of blood glucose level to muscle fiber characteristics and pork quality traits. Meat Sci. 83:62-67. https://doi.org/10.1016/j.meatsci.2009.03.011
Daskalova, A. 2019. Farmed fish welfare: stress, post-mortem muscle metabolism, and stress-related meat quality changes. Int. Aquat. Res. 11:113-124. https://doi.org/10.1007/s40071-019-0230-0
Davoli, R. & S. Braglia. 2007. Molecular approaches in pig breeding to improve meat quality. Brief. Funct. Genomics. 6:313-321. https://doi.org/10.1093/bfgp/elm036
Davoli, R., C. Schivazappa, P. Zambonelli, S. Braglia, A. Rossi, & R. Virgili. 2017. Association study between single nucleotide polymorphisms in porcine genes and pork quality traits for fresh consumption and processing into Italian dry cured ham. Meat Sci. 126:73-81. https://doi.org/10.1016/j.meatsci.2016.11.018
Fukuda, T., A. Tokunaga, R. Sakamoto, & N. Yoshida. 2011. FbxI10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly. Mol. Cell. Neurosci. 46:614–624. https://doi.org/10.1016/j.mcn.2011.01.001
Gao, Y., R. Zhang, X. Hu, & N. Li. 2007. Application of genomic technologies to the improvement of meat quality of farm animals. Meat Sci. 77:36-45. https://doi.org/10.1016/j.meatsci.2007.03.026
Gao, Y., J. Zhang, L. He, X. Shi, L. Han, Q. Yu, Y. Yang, R. Song, M. Han, & S. Zhao. 2020. Associations among adenosine monophosphate-activated protein kinase, glycolysis, muscle characteristics, and apoptosis in postmortem bovines longissimus muscle. Eur. Food Res. Technol. 246:971-985. https://doi.org/10.1007/s00217-020-03458-3
Gebreselassie, G., H. Berihulay, L. Jiang, & Y. Ma. 2020. Review on genomic regions and candidate genes associated with economically important production and reproduction traits in sheep (Ovies aries). Animals. 10: 33. https://doi.org/10.3390/ani10010033
Große-Brinkhaus, C., E. Jonas, & H. Buschbell. 2010. Epistatic QTL pairs associated with meat quality and carcass composition traits in a porcine Duroc × Pietrain population. Genet. Sel. Evol. 42:39. https://doi.org/10.1186/1297-9686-42-39
Han, X., H. Yang, & T. Jiang. 2014. Investigation of four candidate genes (IGF2, JHDM1A, COPB1 and TEF1) for growth rate and backfat thickness traits on SSC2q in large white pigs. Mol. Biol. Rep. 41:309-315. https://doi.org/10.1007/s11033-013-2863-1
He, J., E. Kallin, Y. I. Tsukada, & Y. Zhang. 2008. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15Ink4b. Nat. Struct. Mol. Biol. 15:1169-1175. https://doi.org/10.1038/nsmb.1499
Honikel, K., C. Kim, & R. Hamm. 1986. Sarcomere shortening of prerigor muscles and its influence on drip loss. Meat Sci. 16:267-282. https://doi.org/10.1016/0309-1740(86)90038-0
Jennen, D. G. J., A. D. Brings, G. Liu, H. Jungst, E. Tholen, E. Jonas, D. Tesfaye, K. Schellander, & C. Phatsara. 2007. Genetic aspects concerning drip loss and water-holding capacity of porcine meat: Review Article. J. Anim. Breed Genet. 124:2–11. https://doi.org/10.1111/j.1439-0388.2007.00681.x
Kawakami, E., A. Tokunaga, M. Ozawa, R. Sakamoto, & N. Yoshida. 2015. The histone demethylase Fbxl11/Kdm2a plays an essential role in embryonic development by repressing cell-cycle regulators. Mech. Dev. 135:31–42. https://doi.org/10.1016/j.mod.2014.10.001
Kayan, A., M. J. Uddin, H. Kocamis, D. Tesfaye, C. Looft, E. Tholen, K. Schellander, & M. U. Cinar. 2013. Association and expression analysis of porcine HNF1A gene related to meat and carcass quality traits. Meat Sci. 94:474-479. https://doi.org/10.1016/j.meatsci.2013.04.015
Koomkrong, N., C. Boonkaewwan, W. Laenoi, & A. Kayan. 2017. Blood haematology, muscle pH and serum cortisol changes in pigs with different levels of drip loss. Asian-Australas. J. Anim. Sci. 30:1751. https://doi.org/10.5713/ajas.17.0037
Le, T. T., H. T. Nguyen, & M. A. Pham. 2020. Rigor mortis development and effects of filleting conditions on the quality of Tra catfish (Pangasius hypophthalmus) fillets. J. Food Sci. Technol. 57:1320-1330. https://doi.org/10.1007/s13197-019-04166-x
Liu, G., D. Jennen, & E. Tholen. 2007. A genome scan reveals QTL for growth, fatness, leanness and meat quality in a Duroc-Pietrain resource population. Anim. Genet. 38:241-252. https://doi.org/10.1111/j.1365-2052.2007.01592.x
Liu, J., M. Pan, D. Huang, J. Wu, Y. Liu, Y. Guo, W. Zhang, & K. Mai. 2021. High glucose induces apoptosis, glycogen accumulation and suppresses protein synthesis in muscle cells of olive flounder Paralichthys olivaceus. Br. J. Nutr. 1-12. https://doi.org/10.1017/S0007114521002634
Mateescu, R. G., D. J. Garrick, & J. M. Reecy. 2017. Network analysis reveals putative genes affecting meat quality in Angus cattle. Front. Genet. 8:171. https://doi.org/10.3389/fgene.2017.00171
Moreno, I., P. Lipová, L. Ladero, J. L. Fernández-García, & R. Cava. 2020. Glycogen and lactate contents, pH and meat quality and gene expression in muscle Longissimus dorsi from iberian pigs under different rearing conditions. Livest. Sci. 240:104167. https://doi.org/10.1016/j.livsci.2020.104167
Nilsson, C., U. Johansson, A. C. Johansson, K. Kagedal, & K. Ollinger. 2006. Cytosolic acidification and lysosomal alkalinization during TNF-alpha induced apoptosis in U937 cells. Apoptosis. 11:1149–1159. https://doi.org/10.1007/s10495-006-7108-5
Oskoueian, E., W. Mullen, & A. Albalat. 2016. Proteomic Application for Farm Animal Management. In: G.H. Salekden (editor). Agricutural Proteomic. Springer International Publishing, Switzerland. p. 147–163. https://doi.org/10.1007/978-3-319-43275-5_9
Pahuja, S., S. Jain, M. Nain, R. Goel, S. Sehgal, & M. Jain. 2020. Assessment of rhesus and kell blood group antigens, phenotypes, and their allelic frequencies in North Indian blood donors. Asian J. Transfus. Sci. 14:137. https://doi.org/10.4103/ajts.AJTS_9_19
Pegolo, S., A. Cecchinato, S. Savoia, L. Di Stasio, A. Pauciullo, A. Brugiapaglia, G. Bittante, & A. Albera. 2020. Genome-wide association and pathway analysis of carcass and meat quality traits in Piemontese young bulls. Animal. 14:243-252. https://doi.org/10.1017/S1751731119001812
Peng, Y. B., B. Fan, & X. l. Han. 2011. Molecular characterization of the porcine JHDM1A gene associated with average daily gain: evaluation its role in skeletal muscle development and growth. Mol. Biol. Rep. 38:4697-4704. https://doi.org/10.1007/s11033-010-0604-2
Piórkowska, K., K. Żukowski, K. Ropka-Molik, M. Tyra, & A. Gurgul. 2018. A comprehensive transcriptome analysis of skeletal muscles in two Polish pig breeds differing in fat and meat quality traits. Genetics and Molecular Biology 41:125-136. https://doi.org/10.1590/1678-4685-gmb-2016-0101
Plastow, G. & H. Bruce. 2014. Modern Genetics and Genomic Technologies and their Application in the Meat Industry-Red Meat Animal, Poultry. In: M. Dikeman, & C. Devine (Editors). Encyclopedia of Meat Sciences 2nd ed. Academic Press, UK, p. 37–42. https://doi.org/10.1016/B978-0-12-384731-7.00189-6
Savenije, B., E. Lambooij, M. Gerritzen, K. Venema, & J. Korf. 2002. Effects of feed deprivation and transport on preslaughter blood metabolites, early postmortem muscle metabolites, and meat quality. Poult. Sci. 81:699-708. https://doi.org/10.1093/ps/81.5.699
Scheffler, T. & D. Gerrard. 2007. Mechanisms controlling pork quality development: The biochemistry controlling postmortem energy metabolism. Meat Sci. 77:7-16. https://doi.org/10.1016/j.meatsci.2007.04.024
Zhang, X., S. Yang, J. Chen, & Z. Su. 2019. Unraveling the regulation of hepatic gluconeogenesis. Front. Endocrinol. 9:802. https://doi.org/10.3389/fendo.2018.00802
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.