Variation and Association of Avian β-Defensin 2 Gene with the Concentration of Immunoglobulin Y and the Titer of Newcastle-Disease Antibody in IPB-D1 Chicken
Abstract
Defensins play roles in innate immunity by exhibiting antimicrobial activity against microbes such as gram-negative and -positive bacteria, viruses, and fungi. This study aimed to identify variants of the Avian β-Defensin 2 (AvBD2) and determine their associations with the concentration of immunoglobulin Y and the titer of Newcastle disease (ND) antibody in IPB-1 chicken. The chicken population used in this study was 21-week-old IPB-D1 chickens (n=90). Variations in AvBD2 were analyzed by direct DNA sequencing. IgY concentration was measured by indirect ELISA, and the titer of ND antibody was measured by the hemagglutination-inhibition test. The AvBD2 association was analyzed by the general linear model procedure and Duncan’s multiple range test. The results revealed 10 SNPs located in intron 1 (3 SNPs), exon 2 (3 SNPs), and intron 2 (4 SNPs). Six of these SNPs were associated with IgY concentration. The CC genotype of g.5002 C>T was associated with IgY concentration and produced the highest mean IgY concentration. This g.5002 C>T mutation results in alanine-to-valine substitutions. The CC genotype of g.5002 C>T could be considered as a criterion for selecting chickens with high IgY concentrations.
References
Al Habib, M. F., S. Murtini, L. Cyrilla, I. I. Arief, R. Mutia, & C. Sumantri. 2020. Performa pertumbuhan ayam IPB-D1 pada perlakuan pakan dan manajemen pemeliharaan yang berbeda. J. Agripet. 20:177-186. https://doi.org/10.17969/agripet.v20i2.16375
Allendorf, F. W., & G. H. Luikart. 2007. Conservation and the Genetics of Population. Blackwell Publishing, Oxford.
Cruzat, V. F., M. Krause, & P. Newsholme. 2014. Amino acid supplementation and impact on immune function in the context of exercise. J. Int. Soc. Sports Nutr. 11:61. https://doi.org/10.1186/s12970-014-0061-8
Cuperus, T., M. Coorens, A. van Dijk, & H. P. Haagsman. 2013. Avian host defense peptides. Dev. Comp. Immunol. 41:352-369. https://doi.org/10.1016/j.dci.2013.04.019
Derache, C., V. Labas, V. Aucagne, H. Meudal, C. Landon, A. F. Delmas, T. Magallon, & A. C. Lalmanach. 2009. Primary Structure and Antibacterial Activity of Chicken Bone Marrow-Derived β-Defensins. Antimicrob. Agents Chemother. 53:4647-4655. https://doi.org/10.1128/AAC.00301-09
Guo, C., I. C. McDowell, M. Nodzenski, D. M. Scholtens, A. S. Allen, W. L. Lowe, & T. E. Reddy. 2017. Transversions have larger regulatory effects than transitions. BMC Genomic. 18:394. https://doi.org/10.1186/s12864-017-3785-4
Harter, H. L. 1960. Critical values for Duncan’s new multiple range test. Biometrics 16:671-685. https://doi.org/10.2307/2527770
Hasenstein, J. R., & S. J. Lamont. 2007. Chicken gallinacin gene cluster associated with Salmonella response in advanced intercross line. Avian Dis. 51:561-567. https://doi.org/10.1637/0005-2086(2007)51[561:CGGCAW]2.0.CO;2
Hong, Y. H., W. Song, S. H. Lee, & H. S. Lillehoj. 2012. Differential gene expression profiles of β-defensins in the crop, intestine, and spleen using a necrotic enteritis model in 2 commercial broiler chicken lines. Poult. Sci. 91:1081-1088. https://doi.org/10.3382/ps.2011-01948
Hong, Y., J. Lee, T. H. Vu, S. Lee, H. S. Lillehoj, & Y. H. Hong. 2020. Chicken avian β-defensin 8 modulates immune response via the mitogen-activated protein kinase signaling pathways in a chicken macrophage cell line. Poult. Sci. 99:4174-4182. https://doi.org/10.1016/j.psj.2020.05.027
Hossain, K. M. M., M. Y. Ali, & I. Yamato. 2010. Antibody levels against Newcastle Disease Virus in chickens in Rajshahi and surrounding districts of Bangladesh. Int. J. Biol. 2:1-5. https://doi.org/10.5539/ijb.v2n2p102
Indriani, R. & I. Dharmayanti. 2016. Respon titer antibodi and proteksi virus Newcastle disease genotype I, II, VI dan VII sebagai vaksin terhadap infeksi isolat virus Newcastle disease chicken/Indonesia/GTT/11. Jurnal Biologi Indonesia 12:211-218.
Kapczynski, D. R., C. L. Afonso, & P. J. Miller. 2013. Immune responses of poultry to Newcastle disease virus. Dev. Comp. Immunol. 41:447-453. https://doi.org/10.1016/j.dci.2013.04.012
Kowalczyk, K. J., J. Daiss, J. Halpern, & T. F. Roth. 1985. Quantitation of maternal-fetal IgG transport in the chicken. Immunology. 54:755-762.
Li, P., Y. L. Yin, D. Li, S. W. Kim, & G. Wu. 2007. Amino acids and immune function. Br. J. Nutr. 98:237-252. https://doi.org/10.1017/S000711450769936X
Liu, C., L. Jiang, L. Liu, L. Sun, W. Zhao, Y. Chen, T. Qi, Z. Han, Y. Shao, S. Liu, & D. Ma. 2018. Induction of Avian β-Defensin 2 is possibly mediated by the p38 MAPK signal pathway in chicken embryo fibroblasts after Newcastle disease virus infection. Front. Microbiol. 9:751. https://doi.org/10.3389/fmicb.2018.00751
Lynn, D. J., R. Higgs, S. Gaines, J. Tierney, T. James, A. T. Lloyd, M. A. Fares, G. Mulcahy, & C. O’Farrelly. 2004. Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics 56:170-177. https://doi.org/10.1007/s00251-004-0675-0
Lynn, D. J., R. Higgs, A. T. Lloyd, C. O’Farrelly, V. Hervé-Grépinet, Y. Nys, F. S. Brinkman, P. L. Yu, A. Soulier, P. Kaiser, G. Zhang, & R. I. Lehrer. 2007. Avian beta-defensin nomenclature: a community proposed update. Immunol. Lett. 110:86-89. https://doi.org/10.1016/j.imlet.2007.03.007
Morammazi, S. & H. Habibi. 2017. Sequence variation in GAL1 and GAL2 genes in Khuzestan local chickens. Eur. Online J. Nat. Soc. Sci. 6:508-515.
Masrurah, I. Khaerunnisa, S. Murtini, & C. Sumantri. 2021. Avian Beta Defensin 2 (AvBD2) gene polymorphism identification in IPB-D1 chicken. JITV 26:82-88. https://doi.org/10.14334/jitv.v26i2.2715
Mukhopadhyay, T. & S. Bhattacharjee. 2016. Genetic diversity: Importance and Measurements. In: A. H. Mir, N. A. Bhat (Eds). Conserving Biological Diversity: A Multiscaled Approach. Research India Publications, New Delhi. p. 251-295.
Munhoz, L. S., G. D. Vargas, G. Fischer, Md Lima, P. A. Esteves, & S. de Oliviera Hübner. 2014. Avian IgY antibodies: Characteristics and applications in immunodiagnostic. Cienc. Rural. 44:153-160. https://doi.org/10.1590/S0103-84782014000100025
Rahman, M., S. Mostafijur, R. Deb, & M. Nooruzzaman. 2017. Evaluation of serum antibody titer level against Newcastle disease virus in vaccinated broiler chickens. Avas 4:94-98.
Rengaraj, D., A. D. Truong, H. S. Lillehoj, J. Y. Han, & Y. H. Hong. 2018. Expression and regulation of avian beta-defensin 8 protein in immune tissues and cell lines of chickens. Asian-Australas. J. Anim. Sci. 31:1516-1524. https://doi.org/10.5713/ajas.17.0836
Sugiarto, H. & P. L. Yu. 2004. Avian antimicrobial peptides: the defense role of beta-defensins. Biochem. Biophys. Res. Commun. 323:721-727. https://doi.org/10.1016/j.bbrc.2004.08.162
Sumantri, C., I. Khaerunnisa, & A. Gunawan. 2020. The genetic quality improvement of native and local chicken to increase production and meat quality in order to build the Indonesian chicken industry. IOP Conf. S. Earth Environ. Sci. 492:012099. https://doi.org/10.1088/1755-1315/492/1/012099
Terada, T., T. Nii, N. Isobe, & Y. Yoshimura. 2018. Changes in the expression of Avian β-defensins (AvBDs) and proinflammatory cytokines and localization of AvBD2 in the intestine of broiler embryos and chicks during growth. J. Poult. Sci. 55:280-287. https://doi.org/10.2141/jpsa.0180022
Ulupi, N., C. Sumantri, & S. Darwati. 2016. Resistance Against Salmonella Pullorum in IPB-D1 Crossbreed, Kampong and Commercial Broiler Chicken. The 1st Conference Technology on Bioscience and Social Science. Universitas Andalas, Padang.
van Dijk, A., E. J. A. Veldhuizen, & H. P. Haagsman. 2008. Avian defensins. Vet. Immunol. Immunopathol. 124:1-18. https://doi.org/10.1016/j.vetimm.2007.12.006
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.