Mitigation of Polycyclic Aromatic Hydrocarbons Formation in Goat Satay by Shallots Juices Marination
Abstract
This study aimed to mitigate the carcinogen formation of polycyclic aromatic hydrocarbons (PAHs) in charcoal-grilled goat satay by marinating raw goat-satay with shallots (Allium cepa var. Ascalonicum) juices. The experiment used a 2 x 4 split-plot factorial randomized block design. The experiment consisted of 2 treatments of 2 goat satay types (without and with sliced fat) and 4 treatments of marination with shallots juice at concentrations of 0%, 10%, 20%, and 30% (gmL-1 of fresh shallots in distilled water) for 60 minutes at 4 °C. A total of 24 samples of raw and grilled goat-satay were used for 3 replication groups. The marination with 10% and 20% shallots juices significantly reduced the BaP and BaA until they were not detected even though they increased the non-carcinogenic Pyr levels in the grilled goat-satay with and without sliced fat. The marination with 10%, 20%, and 30% shallots juice significantly prevented the formation of Phe, Ace, and Nap so that they were not detected in the grilled goat-satay with and without sliced fat. The marination with 30% shallots juice of raw goat-satay without sliced fat resulted in the highest antioxidant activities and detectable BaP levels (3.88 mg kg-1).
References
Aaslyng, M. D., L. Duedahl-Olesen, K. Jensen, & L. Meinert. 2013. Content of heterocyclic amines and polycyclic aromatic hydrocarbons in pork, beef and chicken barbecued at home by Danish consumers. Meat Sci. 93:85-91. https://doi.org/10.1016/j.meatsci.2012.08.004
Acheampong, A. A., M. Badu, & A.Y. Agyemang. 2016. Comparative Total Phenolics and Antioxidant Activities of Xanthosoma colocasia, Solanum torvum and Allium ascalonicum L. Int. J. Chem. Biomol. Sci. 2:73-79.
Adeyeye, S. A. O. 2020. Polycyclic aromatic hydrocarbons in foods: A critical review. Curr. Nutr. Food Sci. 16:866-873. https://doi.org/10.2174/1573401315666190215112216
Adiyastiti, B. E. T. & E. Suryanto. 2014. Pengaruh lama pembakaran dan jenis bahan bakar terhadap kualitas sensoris dan kadar benzo (a) piren sate daging kambing. Bul. Peternak. 38:189-196. https://doi.org/10.21059/buletinpeternak.v38i3.5255
Aguiar, J., B. N. Estevinho, & L. Santos. 2016. Microencapsulation of natural antioxidants for food application–The specific case of coffee antioxidants–A review. Trends Food Sci. Technol. 58:21-39. https://doi.org/10.1016/j.tifs.2016.10.012
Ahmad, R. S., A. Imran, & M. B. Hussain. 2018. Nutritional Composition of Meat. In: M. S. Arshad (Eds). Meat Science and Nutrition. IntechOpen, London. https://doi.org/10.5772/intechopen.77045
Ahmad Kamal, N. H., S. Jinap, & M. Sanny. 2018. Simultaneous formation of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HCAs) in gas-grilled beef satay at different temperatures. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 35:848-869. https://doi.org/10.1080/19440049.2018.1425553
AOAC. 2019. Official Methods of Analysis of AOAC International. 21st ed. Assoc. Off. Anal. Chem., Arlington.
Azarenko, O., G. Smiyun, J. Mah, L. Wilson, & M.A. Jordan. 2014. Antiproliferative mechanism of action of the novel taxane cabazitaxel as compared with the parent compound docetaxel in MCF7 breast cancer cells. Mol. Cancer Ther. 13:2092-2103. https://doi.org/10.1158/1535-7163.MCT-14-0265
Barriuso, B., I. Astiasarán, & D. Ansorena. 2013. A review of analytical methods measuring lipid oxidation status in foods: a challenging task. Eur. Food Res. Technol. 236:1-15. https://doi.org/10.1007/s00217-012-1866-9
Bartosz, G. 2013. Food Oxidants and Antioxidants: Chemical, Biological, and Functional Properties. CRC press, Boca Raton. https://doi.org/10.1201/b15062
Bekhit, A. E. D. A., D. L. Hopkins, F. T. Fahri, & E. N. Ponnampalam. 2013. Oxidative processes in muscle systems and fresh meat: Sources, markers, and remedies. Compr. Rev. Food Sci. Food Saf. 12:565-597. https://doi.org/10.1111/1541-4337.12027
Britt, P. F., A. C. Buchanan, C. V. Owens Jr, & J. T. Skeen. 2004. Does glucose enhance the formation of nitrogen containing polycyclic aromatic compounds and polycyclic aromatic hydrocarbons in the pyrolysis of proline?. Fuel 83:1417-1432. https://doi.org/10.1016/j.fuel.2004.02.009
Chen, J. & S. Chen. 2004. Removal of polycyclic aromatic hydrocarbons by low density polyethylene from liquid model and roasted meat. Food Chem. 90:461-469. https://doi.org/10.1016/j.foodchem.2004.05.010
Chen, Y., W. Du, G. Shen, S. Zhuo, X. Zhu, H. Shen, Y. Huang, S. Su, N. Lin, L. Pei, X. Zheng, J. Wu, Y. Duan, X. Wang, W. Liu, M. Wong, & S. Tao. 2017. Household air pollution and personal exposure to nitrated and oxygenated polycyclic aromatics (PAHs) in rural households: Influence of household cooking energies. Indoor Air 27:169-178. https://doi.org/10.1111/ina.12300
Cordeiro, T., O. Viegas, M. Silva, Z. E. Martins, I. Fernandes, M. L. P. V. O. I. Ferreira, O. Pinho, N. Mateus, & C. Calhau. 2020. Inhibitory effect of vinegars on the formation of polycyclic aromatic hydrocarbons in charcoal-grilled pork. Meat Sci. 167:108083. https://doi.org/10.1016/j.meatsci.2020.108083
Cunha, L. C., M. L. G. Monteiro, J. M. Lorenzo, P. E. Munekata, V. Muchenje, F. A. L. De Carvalho, & C. A. Conte-Junior. 2018. Natural antioxidants in processing and storage stability of sheep and goat meat products. Food Res. Int. 111:379-390. https://doi.org/10.1016/j.foodres.2018.05.041
Dost, K. & C. İdeli. 2012. Determination of polycyclic aromatic hydrocarbons in edible oils and barbecued food by HPLC/UV–Vis detection. Food Chem. 133:193-199. https://doi.org/10.1016/j.foodchem.2012.01.001
Embuscado, M. E. 2015. Spices and herbs: Natural sources of antioxidants — A mini review. J. Funct. Foods. 18:811–819. https://doi.org/10.1016/j.jff.2015.03.005
Escudero, E., L. Mora, P. D. Fraser, M.C. Aristoy, & F. Toldrá. 2013. Identification of novel antioxidant peptides generated in Spanish dry-cured ham. Food Chem. 138:1282-1288. https://doi.org/10.1016/j.foodchem.2012.10.133
Estévez, M., & Y. Xiong. 2019. Intake of oxidized proteins and amino acids and causative oxidative stress and disease: recent scientific evidences and hypotheses. J. Food Sci. 84:387-396. https://doi.org/10.1111/1750-3841.14460
Falowo, A. B., P. O. Fayemi, & V. Muchenje. 2014. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 64:171-181. https://doi.org/10.1016/j.foodres.2014.06.022
Farhadian, A., S. Jinap, A. Faridah, & Zaidul. 2012. Effects of marinating on the formation of polycyclic aromatic hydrocarbons (benzo[a]pyrene, benzo[b]fluoranthene and fluoranthene) in grilled beef meat. Food Control 28:420-425. https://doi.org/10.1016/j.foodcont.2012.04.034
Faustman, C. & S. P. Suman. 2017. The Eating Quality of Meat: I—Color. In: F. Toldra (Eds). Lawrie´ s meat Science. Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing, Sawston. p. 329-356. https://doi.org/10.1016/B978-0-08-100694-8.00011-X
García-Lomillo, J., O. Viegas, M. L. Gonzalez-SanJose, & I. M. Ferreira. 2017. Influence of red wine pomace seasoning and high-oxygen atmosphere storage on carcinogens formation in barbecued beef patties. Meat Sci. 125:10-15. https://doi.org/10.1016/j.meatsci.2016.11.009
Gibis, M. & J. Weiss. 2012. Antioxidant capacity and inhibitory effect of grape seed and rosemary extract in marinades on the formation of heterocyclic amines in fried beef patties. Food Chem. 134:766-774. https://doi.org/10.1016/j.foodchem.2012.02.179
Goncharov, N. V., D. A. Belinskaia, A. I. Ukolov, R. O. Jenkins, & P. V. Avdonin. 2021. Organosulfur Compounds as Nutraceuticals. In: R. C. Gupta, R. Lall, A. Srivastava (Eds). Nutraceuticals: Efficacy, Safety and Toxicity. Academic Press, Massachusetts. p. 911-924. https://doi.org/10.1016/B978-0-12-821038-3.00054-9
Guyon, C., A. Meynier, & M. de Lamballerie. 2016. Protein and lipid oxidation in meat: A review with emphasis on high-pressure treatments. Trends Food Sci. Technol. 50:131-143. https://doi.org/10.1016/j.tifs.2016.01.026
Hajji, H., M. Joy, G. Ripoll, S. Smeti, I. Mekki, F. M. Gahete, M. Mahouachi, & N. Atti. 2016. Meat physicoChem. properties, fatty acid profile, lipid oxidation and sensory characteristics from three North African lamb breeds, as influenced by concentrate or pasture finishing diets. J. Food Compos. Anal. 48:102-110. https://doi.org/10.1016/j.jfca.2016.02.011
International Agency for Research on Cancer [IARC]. 2015. QA on the carcinogenicity of the consumption of red meat and processed meat. https://www.iarc.fr/en/media-centre/iarcnews/pdf/Monographs-QA_Vol114.pdf. [12 April 2020].
Irnanda, K., A. Meiftasari, S. Nagadi, & E. Lukitaningsih. 2012. Saf. evaluation of chicken satay in Yogyakarta Indonesia based on benzo[a]pyrene content. Indones. J. Cancer Chemoprevention. 3:432-436. https://doi.org/10.14499/indonesianjcanchemoprev3iss3pp432-436
Jahurul, M. H. A., S. Jinap, I. S. M. Zaidul, F. Sahena, A. Farhadian, & P. Hajeb. 2013. Determination of fluoranthene, benzo [b] fluoranthene and benzo [a] pyrene in meat and fish products and their intake by Malaysian. Food BioSci. 1:73-80. https://doi.org/10.1016/j.fbio.2013.03.006
Janoszka, B., A. Nowak, M. Szumska, E. Śnieżek, & K. Tyrpień-Golder. 2019. Human exposure to biologically active heterocyclic aromatic amines arising from thermal processing of protein rich food. Wiad. Lek. 72:1542-1550. https://doi.org/10.36740/WLek201908123
Johnson, D. R. & E. A. Decker. 2015. The role of oxygen in lipid oxidation reactions: A review. Annu. Rev. Food Sci. Technol. 6:171-190. https://doi.org/10.1146/annurev-food-022814-015532
Jones, D. P. 2015. Redox theory of aging. Redox Biol. 5:71-79. https://doi.org/10.1016/j.redox.2015.03.004
Kaneko, T., K. Shimpo, T. Chihara, H. Beppu, A. Tomatsu, M. Shinzato, T. Yanagida, T. Ieike, S. Sonoda, A. Futamura, A. Ito, & T. Higashiguchi. 2012. Inhibition of ENNG-induced pyloric stomach and small intestinal carcinogenesis in mice by high temperature-and pressure-treated garlic. Asian Pac. J. Cancer Prev. 13:1983-1988. https://doi.org/10.7314/APJCP.2012.13.5.1983
Kao, T. H., S. Chen, C. J. Chen, Huang, & B. H. Chen. 2012. Evaluation of analysis of polycyclic aromatic hydrocarbons by the QuEChERS method and gas chromatography–mass spectrometry and their formation in poultry meat as affected by marinating and frying. J. Agric. Food Chem. 60:1380-1389. https://doi.org/10.1021/jf204650u
Karmas, E. & R. S. Harris. 2012. Nutrional Evaluation of Food Processing. Springer Science & Business Media, New York. https://doi.org/10.1007/978-94-011-7030-7
Khan, M. R. 2015. Influence of food condiments on the formation of carcinogenic heterocyclic amines in cooked chicken and determination by LC-MS/MS. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 32:307-314. https://doi.org/10.1080/19440049.2015.1008057
Kim, H. J., J. Cho, & A. Jang. 2021. Effect of charcoal type on the formation of polycyclic aromatic hydrocarbons in grilled meats. Food Chem. 343:128453. https://doi.org/10.1016/j.foodchem.2020.128453
Kim, H. J., H. J. Kim & A. Jang. 2019. Nutritional and antioxidative properties of black goat meat cuts. Asian-Australas. J. Anim. Sci. 32:1423. https://doi.org/10.5713/ajas.18.0951
Kumar, Y., D. N. Yadav, T. Ahmad, & K. Narsaiah. 2015. Recent trends in the use of natural antioxidants for meat and meat products. Compr. Rev. Food Sci. Food Saf. 14:796-812. https://doi.org/10.1111/1541-4337.12156
Lai, E. C., S. H. Lau, & W. Y. Lau. 2012. Current management of gastrointestinal stromal tumors–a comprehensive review. Int. J. Surg. 10:334-340. https://doi.org/10.1016/j.ijsu.2012.05.007
Lee, J. G., S. Y. Kim, J. S. Moon, S. H. Kim, D. H. Kang, & H. J. Yoon. 2016. Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats. Food Chem. 199:632-638. https://doi.org/10.1016/j.foodchem.2015.12.017
Lorenzo, J. M., P. E. Munekata, B. Gomez, F. J. Barba, L. Mora, C. Perez-Santaescolastica, & F. Toldra. 2018. Bioactive peptides as natural antioxidants in food products–A review. Trends Food Sci. Technol. 79:136-147. https://doi.org/10.1016/j.tifs.2018.07.003
Lu, F., G. K. Kuhnle, & Q. Cheng. 2018. The effect of common spices and meat type on the formation of heterocyclic amines and polycyclic aromatic hydrocarbons in deep-fried meatballs. Food Control. 92:399–411. https://doi.org/10.1016/j.foodcont.2018.05.018
Ma, H. B., S. Huang, X. R. Yin, Y. Zhang, & Z. L. Di. 2014. Apoptotic pathway induced by diallyl trisulfide in pancreatic cancer cells. World J. Gastroenterol. 20:193-203. https://doi.org/10.3748/wjg.v20.i1.193
Mateescu, R. G., A. J. Garmyn, M. A. O’neil, R. G. Tait Jr, A. Abuzaid, M. S. Mayes, D. J. Garrick, A. L. Van Eenennaam, D. L. VanOverbeke, G. G. Hilton, D. C. Beitz, & J. M. Reecy. 2012. Genetic parameters for carnitine, creatine, creatinine, carnosine, and anserine concentration in longissimus muscle and their association with palatability traits in Angus cattle. J. Anim. Sci. 90:4248-4255. https://doi.org/10.2527/jas.2011-5077
Min, S., J. K. Patra, & H. S. Shin. 2018. Factors influencing inhibition of eight polycyclic aromatic hydrocarbons in heated meat model system. Food Chem. 239:993-1000. https://doi.org/10.1016/j.foodchem.2017.07.020
Mirzaei, A., A. Afshoon, & M. J. Barmak. 2017. Antioxidant activity of meat from chicken and goat cooked in microwave cooking system. Int. J. Adv. Biotechnol. Res. 8:1090-4.
Mohammadi, M. & F. Valizadeh-Kakhki. 2018. Polycyclic aromatic hydrocarbons determination in grilled beef and chicken. Polycycl. Aromat. Compd. 38:434-444. https://doi.org/10.1080/10406638.2016.1236824
Munday, R. 2012. Harmful and beneficial effects of organic monosulfies, disulfies, and polysulfies in Animals and humans. Chem. Res. Toxicol. 25:47–60. https://doi.org/10.1021/tx200373u
Neves, T. D. M., D. T. da Cunha, V. V. de Rosso, & S. M. Á. Domene. 2021. Effects of seasoning on the formation of heterocyclic amines and polycyclic aromatic hydrocarbons in meats: A meta‐analysis. Compr. Rev. Food Sci. Food Saf. 20:526-541. https://doi.org/10.1111/1541-4337.12650
Nuray, M. & F. Oz. 2019. The effect of using different types and rates of onion‐water extract in meatball production on the formation of heterocyclic aromatic amines. J. Sci. Food Agric. 99:3538-3547. https://doi.org/10.1002/jsfa.9574
Purchas, R. W., B. H. Wilkinson, F. Carruthers, & F. Jackson. 2014. A comparison of the nutrient content of uncooked and cooked lean from New Zealand beef and lamb. J. Food Compos. Anal. 35:75-82. https://doi.org/10.1016/j.jfca.2014.04.008
Rahal, A., A. Kumar, V. Singh, B. Yadav, R. Tiwari, S. Chakraborty, & K. Dhama. 2014. Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res. Int. 2014:761264. https://doi.org/10.1155/2014/761264
Rose, M., J. Holland, A. Dowding, S. R. Petch, S. White, A. Fernandes, & D. Mortimer. 2015. Investigation into the formation of PAHs in foods prepared in the home to determine the effects of frying, grilling, barbecuing, toasting and roasting. Food Chem. Toxicol. 78:1-9. https://doi.org/10.1016/j.fct.2014.12.018
Rounds, L., C. M. Havens, Y. Feinstein, M. Friedman, & S. Ravishankar. 2012. Plant extracts, spices, and essential oils inactivate Escherichia coli O157: H7 and reduce formation of potentially carcinogenic heterocyclic amines in cooked beef patties. J. Agric. Food Chem. 60:3792-3799. https://doi.org/10.1021/jf204062p
Sepahpour, S., J. Selamat, A. Khatib, M. Y. A. Manap, A. F. Abdull Razis, & P. Hajeb. 2018. Inhibitory effect of mixture herbs/spices on formation of heterocyclic amines and mutagenic activity of grilled beef. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 35:1911-1927. https://doi.org/10.1080/19440049.2018.1488085
Serpen, A., V. Gökmen, & V. Fogliano. 2012. Total antioxidant capacities of raw and cooked meats. Meat Sci. 90:60-65. https://doi.org/10.1016/j.meatsci.2011.05.027
Sharma, R. K., W. G. Chan, J. I. Seeman, & M. R. Hajaligol. 2003. Formation of low molecular weight heterocycles and polycyclic aromatic compounds (PACs) in the pyrolysis of α-amino acids. J. Anal. Appl. Pyrolysis. 66:97-121. https://doi.org/10.1016/S0165-2370(02)00108-0
Sinaga, K., A. M. Legowo, E. Supriatna, & Y. B. Pramono. 2016. Reduction of benzo (a) pyrene in charcoal grilled duck meat by marinating with andaliman (Zanthoxylum acanthopodium, DC) fruit juice. J. Indones. Trop. Anim. Agric. 41:204-208. https://doi.org/10.14710/jitaa.41.4.204-208
Singh, L., T. Agarwal, & J. Simal-Gandara. 2020. PAHs, diet and cancer prevention: Cooking process driven-strategies. Trends Food Sci. Technol. 99:487-506. https://doi.org/10.1016/j.tifs.2020.03.030
Slimestad, R., T. Fossen, & C. Brede. 2020. Flavonoids and other phenolics in herbs commonly used in Norwegian commercial kitchens. Food Chem. 309:125678. https://doi.org/10.1016/j.foodchem.2019.125678
Soladoye, O. P., M. L. Juárez, J. L. Aalhus, P. Shand, & M. Estévez. 2015. Protein oxidation in processed meat: Mechanisms and potential implications on human health. Compr. Rev. Food Sci. Food Saf. 14:106-122. https://doi.org/10.1111/1541-4337.12127
Suleria, H. A. R., M. S. Butt, F. M. Anjum, F. Saeed, & N. Khalid. 2015. Onion: nature protection against physiological threats. Crit. Rev. Food Sci. Nutr. 55:50–66. https://doi.org/10.1080/10408398.2011.646364
Szterk, A. 2015. Heterocyclic aromatic amines in grilled beef: The influence of free amino acids, nitrogenous bases, nucleosides, protein and glucose on HAAs content. J. Food Compos. Anal. 40:39–46. https://doi.org/10.1016/j.jfca.2014.12.011
Szterk, A., M. Roszko, K. Małek, M. Kurek, M. Zbieć, & B. Waszkiewicz-Robak. 2012. Profiles and concentrations of heterocyclic aromatic amines formed in beef during various heat treatments depend on the time of ripening and muscle type. Meat Sci. 92:587-595. https://doi.org/10.1016/j.meatsci.2012.06.004
van der Zanden, L. D. T., E. van Kleef, R. A. de Wijk, & H.C.M. van Trijp. 2014. Knowledge, perceptions and preferences of elderly regarding protein-enriched functional food. Appetite 80:16-22. https://doi.org/10.1016/j.appet.2014.04.025
Viegas, O., P. Novo, E. Pinto, O. Pinho, & I. M. P. L. V. O. Ferreira. 2012. Effect of charcoal types and grilling conditions on formation of heterocyclic aromatic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs) in grilled muscle foods. Food Chem. Toxicol. 50:2128-2134. https://doi.org/10.1016/j.fct.2012.03.051
Wang, H. C., J. Pao, S. Y. Lin, & L. Y. Sheen. 2012. Molecular mechanisms of garlic-derived allyl sulfides in the inhibition of skin cancer progression. Ann. N. Y. Acad. Sci. 1271:44-52. https://doi.org/10.1111/j.1749-6632.2012.06743.x
Wang, H., C. Wang, C. Li, X. Xu, & G. Zhou. 2019. Effects of phenolic acid marinades on the formation of polycyclic aromatic hydrocarbons in charcoal-grilled chicken wings. J. Food Prot. 82:684-690. https://doi.org/10.4315/0362-028X.JFP-18-420
Wongmaneepratip, W., K. N. Jom, & K. Vangnai. 2019. Inhibitory effects of dietary antioxidants on the formation of carcinogenic polycyclic aromatic hydrocarbons in grilled pork. Asian-Australas. J. Anim. Sci. 32:1205–1210. https://doi.org/10.5713/ajas.18.0805
Yoshinari, O., Y. Shiojima, & K. Igarashi. 2012. Anti-obesity effects of onion extract in Zucker diabetic fatty rats. Nutrients 4:1518–1526. https://doi.org/10.3390/nu4101518
Zeng, M., J. Wang, M. Zhang, J. Chen, Z. He, F. Qin, Z. Xu, D. Cao, & J. Chen. 2018. Inhibitory effects of Sichuan pepper (Zanthoxylum bungeanum) and sanshoamide extract on heterocyclic amine formation in grilled ground beef patties. Food Chem. 239:111-118. https://doi.org/10.1016/j.foodchem.2017.06.097
Zeng, M., M. Zhang, Z. He, F. Qin, G. Tao, S. Zhang, Y. Gao, & J. Chen. 2017. Inhibitory profiles of chilli pepper and capsaicin on heterocyclic amine formation in roast beef patties. Food Chem. 221:404–411. https://doi.org/10.1016/j.foodchem.2016.10.061
Zeng, M., Z. He, Z. Zheng, F. Qin, G. Tao, S. Zhang, Y. Gao, & J. Chen. 2014. Effect of six Chinese spices on heterocyclic amine profiles in roast beef patties by ultra performance liquid chromatographytandem mass spectrometry and principal component analysis. J. Agric. Food Chem. 62:9908–9915. https://doi.org/10.1021/jf503682j
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.