Inseparability of Dairy Farming Technologies and Their Impacts on Milk Production Systems in Brazil
Abstract
Several studies have analyzed the impact of one technology on the productive performance of dairy systems. However, analyses that consider the impact of joint technologies are scarce. This study was aimed to analyze the inseparability of a set of technologies and their impacts on dairy farm performance. Questionnaires were applied on-site with 155 dairy farmers in Paraná State, Brazil. We collected 17 technological variables related to milk production and variables related to dairy farms’ production. Data analysis was performed in three steps: descriptive analysis, exploratory factor analysis (EFA), and multiple regression. Descriptive analysis was applied to characterize the sample, EFA was applied to generate factors related to the technological variables, and multiple regression was used to compare technological factors with productivity variables – farm performance. Four factors were defined: (i) Forage and farm structure, (ii) management, (iii) genetics, breeding strategies, and concentrate feeding, and (iv) animal health. The four factors significantly explained the differences in milk productivity between dairy farms. Technologies grouped under the factor of genetics were the most important in explaining milk yield per lactating cow, land productivity, and dairy herd reproductive efficiency.
References
Alary, V., M. Corbeels, F. Affholder, S. Alvarez, A. Soria, J. H. V. Xavier, F. A. M. da Silva, & E. Scopel. 2016. Economic assessment of conservation agriculture options in mixed crop-livestock systems in Brazil using farm modelling. Agric. Syst. 144:33–45. https://doi.org/10.1016/j.agsy.2016.01.008
Ameen, A. & S. Raza. 2018. Green revolution: A review. International Journal of Advances in Scientific Research 3:129-137. https://doi.org/10.7439/ijasr.v3i12.4410
Balcão, L. F., C. Longo, J. H. C. Costa, C. Uller-Gómez, L. C. P. M. H. Filho, & M. J. Hötzel. 2017. Characterisation of smallholding dairy farms in southern Brazil. Anim. Prod. Sci. 57:735–745. https://doi.org/10.1071/AN15133
Bánkuti, F. I., R. C. Prizon, J. C. Damasceno, M. M. De Brito, M. S. S. Pozza, & P. G. L. Lima. 2020. Farmers’ actions toward sustainability: a typology of dairy farms according to sustainability indicators. Animal 14:s417–s423. https://doi.org/10.1017/S1751731120000750
Bánkuti, I. F., J. C. Damasceno, S. M. S. Bankuti, K. C. Kuwahara, & R. C. Prizon. 2018. Labor conditions and family succession in dairy production systems in Paraná State, Brazil. Cahiers Agriculture 27:45004. https://doi.org/10.1051/cagri/2018028
Becker, T., M. Kayser, B. Tonn, & J. Isselstein. 2018. How German dairy farmers perceive advantages and disadvantages of grazing and how it relates to their milk production systems. Livest. Sci. 214:112–119. https://doi.org/10.1016/j.livsci.2018.05.018
Bernardes, T. F. & A. C. Rêgo. 2014. Study on the practices of silage production and utilization on Brazilian dairy farms. J. Dairy Sci. 97:1852–1861. https://doi.org/10.3168/jds.2013-7181
Black, R. A., J. L. Taraba, G. B. Day, F. A. Damasceno, & J. M. Bewley. 2013. Compost bedded pack dairy barn management, performance, and producer satisfaction. J. Dairy Sci. 96:8060–8074. https://doi.org/10.3168/jds.2013-6778
Borges, J. A. R. & A. G. J. M. O. Lansink. 2015. Comparing groups of Brazilian cattle farmers with different levels of intention to use improved natural grassland. Livest. Sci. 178:296–305. https://doi.org/10.1016/j.livsci.2015.05.035
Breitenbach, R. 2018. Economic viability of semi-confined and confined milk production systems in free-stall and compost barn. Food Nutr. Sci. 09:609–618. https://doi.org/10.4236/fns.2018.95046
Brennan, M. L., N. Wright, W. Wapenaar, S. Jarratt, P. Hobson-west, I. F. Richens, J. Kaler, H. Buchanan, J. N. Huxley, & H. M. O. Connor. 2016. Exploring attitudes and beliefs towards implementing cattle disease prevention and control Great Britain. Animals 6:61. https://doi.org/10.3390/ani6100061
Casali, M., B. S. De Mendonça, M. M. De Brito, M. G. R. Dos Santos, P. G. L. Lima, T. T. Da Silva Siqueira, J. C. Damasceno, & F. I. Bánkuti. 2020. Information asymmetry among dairy producers in Paraná, Brazil. Semina. Cienc. Agrar. 41: 293-304. https://doi.org/10.5433/1679-0359.2020v41n1p295
Çamdevýren, H., N. Demýr, A. Kanik, & S. Keskýn. 2005. Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs. Ecol. Modell. 181:581–589. https://doi.org/10.1016/j.ecolmodel.2004.06.043
Costa, J. H. C., M. J. Hötzel, C. Longo, & L. F. Balcão. 2013. A survey of management practices that influence production and welfare of dairy cattle on family farms in southern Brazil. J. Dairy Sci. 96: 307-317. https://doi.org/10.3168/jds.2012-5906
Daniel, J. L. P., T. F. Bernardes, C. C. Jobim, P. Schmidt, & L. G. Nussio. 2019. Production and utilization of silages in tropical areas with focus on Brazil. Grass Forage Sci. 74:188–200. https://doi.org/10.1111/gfs.12417
Evenson, R. E. & D. Gollin. 2003. Assessing the impact of the green revolution, 1960 to 2000. Science 300:758–762. https://doi.org/10.1126/science.1078710
FAO. 2018. FAOSTAT: Food and Agricultural Commodities Production; Commodity per Country. http://www.fao.org/faostat/en/#home [10 October 2020]
Feder, G. R. E. & D. Zilberman. 1985. Adoption of agricultural innovations in developing countries: a survey. Econ. Dev. Cult. Change. 33:255–298. https://doi.org/10.1086/451461
Ferrazza, R. de A., M. A. Lopes, D. G. de O. Prado, R. R. de Lima, & F. R. P. Bruhn. 2020. Association between technical and economic performance indexes and dairy farm profitability. Revista Brasileira de Zootecnia. 49:e20180116. https://doi.org/10.37496/rbz4920180116
Fleming, A., E. A. Abdalla, C. Maltecca, & C. F. Baes. 2018. Invited review: Reproductive and genomic technologies to optimize breeding strategies for genetic progress in dairy cattle. Arch. Anim. Breed. 61:43–57. https://doi.org/10.5194/aab-61-43-2018
Frössling, J. & M. Nöremark. 2016. Differing perceptions – Swedish farmers ’ views of infectious disease control. Vet. Med. Sci. 2:54–68. https://doi.org/10.1002/vms3.20
Gabbi, A. M., C. M. Mcmanus, A. V. Silva, L. T. Marques, M. B. Zanela, M. P. Stumpf, & V. Fischer. 2013. Typology and physical – chemical characterization of bovine milk produced with different productions strategies. Agric. Syst. 121:130–134. https://doi.org/10.1016/j.agsy.2013.07.004
García, C. G. M., P. Dorward, & T. Rehma. 2012. Farm and socio-economic characteristics of smallholder milk producers and their influence on technology adoption in Central Mexico. Trop. Anim. Health Prod. 44:1199–1211. https://doi.org/10.1007/s11250-011-0058-0
Hair, J. F., W. C. Black, B. J. Babin, R. E. Anderson, W. C. Black, & R. E. Anderson. 2018. Multivariate Data Analysis, 8th ed. Cengage.
Hills, J. L., W. J. Wales, F. R. Dunshea, S. C. Garcia, & J. R. Roche. 2015. Invited review: An evaluation of the likely effects of individualized feeding of concentrate supplements to pasture-based dairy cows. J. Dairy Sci. 98:1363–1401. https://doi.org/10.3168/jds.2014-8475
IBGE. 2018. Censo Agropecuário https://sidra.ibge.gov.br/pesquisa/censo-agropecuario/censo-agropecuario-2017#pecuaria [10 May 2020].
IBGE. 2021. Pesquisa trimestral do leite. https://sidra.ibge.gov.br/home/pms/brasil [22 February 2021].
Janssen, E. & J. Swinnen. 2017. Technology adoption and value chains in developing countries : Evidence from dairy in India. Food Policy 83:327-336. https://doi.org/10.1016/j.foodpol.2017.08.005
Kaiser, H. F. 1960. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20:141–151. https://doi.org/10.1177/001316446002000116
Kaniyamattam, K., M. A. Elzo, J. B. Cole, & A. De Vries. 2016. Stochastic dynamic simulation modeling including multitrait genetics to estimate genetic, technical, and financial consequences of dairy farm reproduction and selection strategies. J. Dairy Sci. 99:8187–8202. https://doi.org/10.3168/jds.2016-11136
Koerich, G., J. C. Damasceno, F. I. Bánkuti, J. L. Parré, & G. T. dos Santos. 2019. Influence of forage production area, concentrate supply, and workforce on productive results in milk production systems. Revista Brasileira de Zootecnia 48: e20170177. https://doi.org/10.1590/rbz4820170177
Kühl, S., L. Flach, & M. Gauly. 2020. Economic assessment of small-scale mountain dairy farms in South Tyrol depending on feed intake and breed. Ital. J. Anim. Sci. 19:41–50. https://doi.org/10.1080/1828051X.2019.1691064
Losinger, W. C. & A. J. Heinrichs. 1996. Dairy operation management practices and herd milk production. J. Dairy Sci. 79:506–514. https://doi.org/10.3168/jds.S0022-0302(96)76393-2
Ma, W., K. Bicknell, & A. Renwick. 2019. Feed use intensification and technical efficiency of dairy farms in New Zealand. Aust. J. Agric. Resour. Econ. 63:20–38. https://doi.org/10.1111/1467-8489.12283
Mann, C. K. 1977. Packages of Practices; A Step at a Time with Clusters?, in: American Agricultural Economics Association and the Western Agricultural Economics Association. San Diego, CA, p. 12.
McCullock, K., D. L. K. Hoag, J. Parsons, M. Lacy, G. E. Seidel, & W. Wailes. 2013. Factors affecting economics of using sexed semen in dairy cattle. J. Dairy Sci. 96:6366–6377. https://doi.org/10.3168/jds.2013-6672
Moraes, F., M. A. Lopes, F. R. P. Bruhn, F. M. Carvalho, A. L. Ribeiro, & E. M. B. Reis. 2015. Effect of pasture irrigation on the technical and management indicators of dairy farms. Boletim de Indústria Animal 72:136–142. https://doi.org/10.17523/bia.v72n2p136
Nascimento, A. C. C., J. E. de Lima, M. J. Braga, M. Nascimento, & A. P. Gomes. 2012. Technical efficiency of milk production in Minas Gerais: An application of quantile regression. Revista Brasileira de Zootecnia 41:783–789. https://doi.org/10.1590/S1516-35982012000300043
Neumann, M. E., M. A. Zambom, M. J. Lange, F. I. Bankuti, D. D. Castagnara, A. L. G. Dias, R. C. Tinini, & T. Fernandes. 2016. Typology of dairy production systems from West Parana State based on production indices and feed used. Semina. Cienc. Agrar. 37:1565. https://doi.org/10.5433/1679-0359.2016v37n3p1565
Notte, G., H. Cancela, M. Pedemonte, P. Chilibroste, W. Rossing, & J. C. J. Groot. 2020. A multi-objective optimization model for dairy feeding management. Agric. Syst. 183:102854. https://doi.org/10.1016/j.agsy.2020.102854
Novo, A. M., M. Slingerland, K. Jansen, A. Kanellopoulos, & K. E. Giller. 2013. Feasibility and competitiveness of intensive smallholder dairy farming in Brazil in comparison with soya and sugarcane: Case study of the Balde Cheio Programme. Agric. Syst. 121:63–72. https://doi.org/10.1016/j.agsy.2013.06.007
Prospero-Bernal, F., C. G. Martínez-García, R. Olea-Pérez, F. López-González, & C. M. Arriaga-Jordán. 2017. Intensive grazing and maize silage to enhance the sustainability of small-scale dairy systems in the highlands of Mexico. Trop. Anim. Health Prod. 49:1537–1544. https://doi.org/10.1007/s11250-017-1360-2
Rangel, J., C. De-Pablos-Heredero, P. T. Mujica, M. Feijoo, & C. Barba. 2020. Structural and technological characterization of tropical smallholder farms of dual-purpose cattle. Animals 10:86. https://doi.org/10.3390/ani10010086
Rangel, J., J. A. Espinosa, C. de Pablos-Heredero, C. Barba, A. Velez, A. García, & J. Rivas. 2017. Adoption of innovations and organizational practices in management, animal feeding and reproduction in dual-purpose bovine of small farms in Mexico. Revista Científica 27:44–55.
Rauniyar, G. P. & F. M. Goode. 1992. Technology adoption on small farms. World Dev. 20:275–282. https://doi.org/10.1016/0305-750X(92)90105-5
Reid, M., M. O’Donovan, J. P. Murphy, C. Fleming, E. Kennedy, & E. Lewis. 2015. The effect of high and low levels of supplementation on milk production, nitrogen utilization efficiency, and milk protein fractions in late-lactation dairy cows. J. Dairy Sci. 98:5529–5544. https://doi.org/10.3168/jds.2014-9016
Rivas, J., J. M. Perea, C. De-Pablos-Heredero, E. Angon, C. Barba, & A. García. 2019. Canonical correlation of technological innovation and performance in sheep’s dairy farms: Selection of a set of indicators. Agric. Syst. 176:102665. https://doi.org/10.1016/j.agsy.2019.102665
Rogers, E. M. 2003. Diffusion of Innovations, 5th ed. Simon and Schuster, New York.
Simões, A. R. P., C. F. Nicholson, A. M. Novakovic, & R. M. Protil. 2019. Dynamic impacts of farm-level technology adoption on the Brazilian dairy supply chain. International Food and Agribusiness Management Review 23:71–84. https://doi.org/10.22434/IFAMR2019.0033
Simões, A. R. P., M. V. M. Oliveira, & D. O. Lima-Filho. 2015. Social technologies for the development of dairy cattle in Rio Feio Settlement in Guia Lopes da Laguna, MS, Brazil Technologies. Interações, (Campo Grande) 16:163-173. https://doi.org/10.1590/1518-70122015114
Simões, A. R. P., J. D. dos Reis, & P. S. Avelar. 2017. The technological heterogeneity of dairy farming in Minas Gerais. Revistas Agrarian. 10:261–269. https://doi.org/10.30612/agrarian.v10i37.6782
Smith, R. F., J. Oultram, & H. Dobson. 2014. Herd monitoring to optimise fertility in the dairy cow: making the most of herd records, metabolic profiling and ultrasonography (research into practice). Animal 8:185–198. https://doi.org/10.1017/S1751731114000597
Sok, J., H. Hogeveen, A. R. W. Elbers, & A. G. J. M. O. Lansink. 2018. Perceived risk and personality traits explaining heterogeneity in Dutch dairy farmers’ beliefs about vaccination against Bluetongue. J. Risk Res. 9877:1–17. https://doi.org/10.1080/13669877.2016.1223162
Sok, J., H. Hogeveen, A. R. W. Elbers, & A. G. J. M. O. Lansink. 2016. Using farmers’ attitude and social pressures to design voluntary Bluetongue vaccination strategies. Prev. Vet. Med. 133:114–119. https://doi.org/10.1016/j.prevetmed.2016.09.016
Souza, G. N. De, L. M. C. Pegoraro, C. F. Weissheimer, & G. Fischer. 2019. Epidemiological situation and risk factors to infectious diseases in dairy cattle located in different mesoregions of the State of Rio Grande do Sul, Brazil, 2016/2017. Vet. Sci. Med. 2: 1-6.
Yabe, M. T., F. I. Bánkuti, J. C. Damasceno, & M. M. De Brito. 2015. Characteristics of milk production systems and feed strategies for dairy cows in the North and Northwest of Paraná State. Semin. Agrar. 36:4469–4479. https://doi.org/10.5433/1679-0359.2015v36n6Supl2p4469
Zardin, P. B., J. P. Velho, C. C. Jobim, D. R. M. Alessio, I. M. P. Haygert-Velho, G. M. Da Conceição, & P. S. G. Almeida. 2017. Chemical composition of corn silage produced by scientific studies in Brazil - A meta-analysis. Semin. Agrar. 38:503–511. https://doi.org/10.5433/1679-0359.2017v38n1p503
Zimpel, R., F. I. Bánkuti, M. A. Zambom, K. C. Kuwahara, & S. M. S. R. Bánkuti. 2017. Characteristics of the dairy farmers who perform financial management in Paraná State, Brazil. Revista Brasileira de Zootecnia. 46:421–428. https://doi.org/10.1590/s1806-92902017000500008
Authors
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Tropical Animal Science Journal. The statement to release the copyright to Tropical Animal Science Journal is stated in Form A. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.