Ruminal Degradability and Bypass Nutrients of Alkaline or Steam-Treated Cassava Chip and Corn Grain

W. Srakaew, C. Wachirapakorn, A. Cherdthong, C. Wongnen

Abstract

Modification of starches in high-energy feeds using various treatment methods led to the diverse effects on ruminal degradation and bypass protein and starch. Thus, the objectives of the present experiment were to investigate the effects of modification methods applied to high-starch energy feed sources on ruminal degradability and bypass nutrients determined using in situ and in vitro gas production techniques. This experiment was designed using a 2×4 factorial arrangement in a completely randomized design (CRD). The first factor was high-starch energy feed consisted of two levels, i.e., corn grain and cassava chips. The second factor was the treating method consisted of four levels, i.e., no treatment, steam treatment, NaOH treatment, and steam with NaOH treatment. Chemical composition, ruminal in situ disappearance, bypass of crude protein (CP) and non-fiber carbohydrate (NFC), and gas production characteristics were measured in pre-treated and post-treated samples. The results showed that significant interactions (p<0.01) between high-starch energy feed sources and treating methods were observed with respect to CP, ether extract (EE), and NFC, dry matter degradability (DMD), effective degradation (ED), and effective gas production (EP). Cassava chips had lower CP and EE but higher NFC, DMD, ED, and EP (p<0.01) compared with corn grain. Treating methods have no influence on CP and EE (p>0.05) in cassava chips and corn grain. DMD, ED, and EP of treated cassava chips were lower, while bypass CP and bypass NFC of treated cassava chips were higher than untreated cassava chips (p<0.05). On the contrary, treated corn grain led to higher DMD, ED, and EP, but lower bypass CP and bypass NFC than untreated corn grain did (p<0.01). DMD and gas production characteristics in cassava chips and corn grain showed significant correlations between in situ nylon bags and in vitro gas production techniques within each high-starch energy feed source. In conclusion, steam and NaOH treatments are two alternative methods that can modify the starches of high-starch energy feeds to alter ruminal degradation by decreasing solubility and degradability in cassava chips but increasing degradability in corn grain.

References

Ahmadijoo, N., H. Mansoori-Yarahmadi, J. Fakhraei, & M. Changizi. 2020. Reproductive responses, metabolic disorder, ruminal fermentation characteristics, and milk production of postpartum Holstein cows fed steam flaked of corn and barley grains. Trop. Anim. Sci. J. 43:240-247. https://doi.org/10.5398/tasj.2020.43.3.240
AOAC. 2005. The Association of Official Analytical Chemists, 18th ed. Assoc. Off. Anal. Chem., Arlington.
Aschenbach, J. R., G. B. Penner, F. Stumpff, & G. Gabel. 2011. Ruminant nutrition symposium: Role of fermentation acid absorption in the regulation of ruminal pH. J. Anim. Sci. 89:1092-1107. https://doi.org/10.2527/jas.2010-3301
Bhuiyan, M. M., F. Islam, A. J. Cowieson, & P. A. Iji. 2012. Effect of source and processing on maize grain quality and nutritional value for broiler chickens 1. Heat treatment and physiochemical properties. Asian J. Poult. Sci. 6: 101-116. https://doi.org/10.3923/ajpsaj.2012.101.116
Cai, J., Y. Yang, J. Man, J. Huang, Z. Wang, C. Zhang, M. Gu, Q. Liu, & C. Wei. 2014. Structural and functional properties of alkali-treated high-amylose rice starch. Food Chem. 145:245-253. https://doi.org/10.1016/j.foodchem.2013.08.059
Calsamiglia, S., & M. D. Stern. 1995. A three-step in vitro procedure for estimating intestinal digestion of protein in ruminants. J. Anim. Sci. 73:1459-1465. https://doi.org/10.2527/1995.7351459x
Cone, J. W., A. H. Van Gelder, I. A. Soliman, H. De Visser, & A. M. Van Vuuren. 1999. Different techniques to study rumen fermentation characteristics of maturing grass and grass silage. J. Dairy Sci. 82:957-966. https://doi.org/10.3168/jds.S0022-0302(99)75315-4
Domby, E. M., U. Y. Anele, K. K. Gautam, J. E. Hergenreder, A. R. Pepper-Yowell, & M. L. Galyean. 2014. Interactive effects of bulk density of steam-flaked corn and concentration of Sweet Bran on feedlot cattle performance, carcass characteristics, and apparent total tract nutrient digestibility. J. Anim. Sci. 92:1133-43. https://doi.org/10.2527/jas.2013-7038
Fernandes, T., M. A. Zambom, D. D. Castagnara, L. D. Souza, D. O. Damasceno, & E. L. Schmidt. 2015. Use of dried waste of cassava starch extraction for feeding lactating cows. An. Acad. Bras. Cienc. 87:1101-1111. https://doi.org/10.1590/0001-3765201520140220
Gonzalez-Rivas, P. A., K. DiGiacomo, P. A. Giraldo, B. J. Leury, J. J Cottrell, & F. R. Dunshea. 2017. Reducing rumen starch fermentation of wheat with three percent sodium hydroxide has the potential to ameliorate the effect of heat stress in grain-fed wethers. J. Anim. Sci. 95:5547-5562. https://doi.org/10.2527/jas2017.1843
Huntington, G. B. 1997. Starch utilization by ruminants: From basics to the bunk. J. Anim. Sci. 75:852-867. https://doi.org/10.2527/1997.753852x
Israkarn, K., N. Nakornpanom, & P. Hongsprabhas. 2014. Physicochemical properties of starches and proteins in alkali-treated mungbean and cassava starch granules. Carbohydr. Polym. 105:34-40. https://doi.org/10.1016/j.carbpol.2014.01.054
Kamalak, A., O. Canbolat, Y. Gurbuz, & O. Ozay. 2005. Comparison of in vitro gas production technique. Czech J. Anim. Sci. 50:60-67. https://doi.org/10.17221/3996-CJAS
Kanjanapruthipong, J., N. Buatoug, U. Kanto, S. Juttupornpong, & W. Chaw-uthai. 2001. Cassava chips and ground corn as sources of total non-fiber carbohydrates in total mixed rations for dairy cow. Asian-Australas. J. Anim. Sci. 14:206-210. https://doi.org/10.5713/ajas.2001.206
Karami, M., M. H. Palizdar, & M. S. Almasi. 2018. The effect of different processing of corn grain on gas production kinetics and in vitro digestibility in Taleshi cows. J. Livest. Sci. 9:101-106
Kung, L. Jr., B. W. Jesse, J. W. Thomas, J. T. Huber, & R. S. Emery. 1983. High moisture ground ear corn high moisture barley or sodium hydroxide mated barley for lactating cows: milk production and ration utilization. Can. J. Anim. Sci. 63:15-23. https://doi.org/10.4141/cjas83-018
Li, Y. & S. Lim. 2016. Preparation of aqueous alpha-lipoic acid dispersions with octenylsuccinylated high amylose starch. Carbohydr. Polym. 140:253-259. https://doi.org/10.1016/j.carbpol.2015.12.023
Ma, D., J. Li, C. Huang, F. Yang, Y. Wu, L. Liu, W. Jiang, Z. Jia, P. Zhang, X. Liu, & S. Zhang. 2019. Determination of the energy contents and nutrient digestibility of corn, waxy corn and steam-flaked corn fed to growing pigs. Asian-Australas. J. Anim. Sci. 32:1573-1579. https://doi.org/10.5713/ajas.18.0713
Menke, K. H., & H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Anim. Res. Dev. 28:7-55.
Mertens, D. R. 1997. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 80:1463-1481. https://doi.org/10.3168/jds.S0022-0302(97)76075-2
Metzler-Zebeli, B. U., M. Hollmann, S. Sabitzer, L. Podstatzky-Lichtenstein, D. Klein, & Q. Zebeli. 2013. Epithelial response to high-grain diets involves alteration in nutrient transporters and Na+/K+-ATPase mRNA expression in rumen and colon of goats. J. Anim. Sci. 91:4256-4266. https://doi.org/10.2527/jas.2012-5570
Moharrery, A., M. Larsen, & M. R. Weisbjerg. 2014. Starch digestion in the rumen, small intestine, and hind gut of dairy cows - A metaanalysis. Anim. Feed Sci. Technol. 192:1-14. https://doi.org/10.1016/j.anifeedsci.2014.03.001
Nitayavardhana, S., P. Shrestha, M. L. Rasmussen, B. P. Lamsal, J. van Leeuwen, & S. K. Khanal. 2010. Ultrasound improved ethanol fermentation from cassava chips slurry in cassava-based ethanol plants. Biores. Technol. 101:2741-2747. https://doi.org/10.1016/j.biortech.2009.10.075
Nitipot, P. & K. Sommart. 2003. Evaluation of ruminant nutritive value of cassava starch industry by products, energy feed sources and rouges using in vitro gas production technique. In: Proceedings of Annual Agricultural Seminar for year 2003. Khon Kaen, Thailand. p. 179-190.
NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. National Academic Science, Washington, DC.
Ørskov, E. R., & I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499-503. https://doi.org/10.1017/S0021859600063048
Palacios-Fonseca, A. J., J. Castro-Rosas, C. A. Gómez-Aldapa, T. TovarBenítez, B. M. Millán-Malo, A. del Real, & M. E. Rodríguez-García. 2013. Effect of the alkaline and acid treatments on the physicochemical properties of corn starch. J. Food Sci. 11:67-74. https://doi.org/10.1080/19476337.2012.761651
Perez-Carrillo, E., C. M. Luisa, L. E. Sabillo´n-Galeas, J. L. Montalvo-Villarreal, J. R. Canizo, M. M. Georgina, & S. O. Serna-S. 2011. Detrimental effect of increasing sugar concentrations on ethanol production from maize or decorticated sorghum mashes fermented with Saccharomyces cerevisiae or Zymomonas mobilis. Biotechnol. Lett. 33:301-307. https://doi.org/10.1007/s10529-010-0448-9
Pilachai, R., J. T. Schonewille, C. Thamrongyoswittayakul, S. AiumLamai, C. Wachirapakorn, H. Everts, & W. H. Hendriks. 2012. The effects of high levels of rumen degradable protein on rumen pH and histamine concentrations in dairy cows. J. Anim. Physiol. Anim. Nutr. 96:206-213. https://doi.org/10.1111/j.1439-0396.2011.01139.x
Pilachai, R., W. Kaewwongsa, A. Petlum, Y. Chumpol, & W. Thongdee. 2014. Rumen digestibility of lactic acid steeped cassava using nylon bag technique. Khon Kaen Agric. J. 42:567-576.
Pilachai, R., W. Thongdee, Y. Chumpol, S. Seesupa, & J. T. Schonewille. 2017. Effects of proportion of cassava and lactic acid-treated cassava in rations on rumen pH and plasma lipopolysaccharide-binding protein in beef cattle. Thai J. Vet. Med. 47:173-181.
Sarocha. P., J. Ankita, B. Muhammad, N. Athapol, & S. Vijay. 2018. Comparison of cassava starch with corn as a feedstock for bioethanol production. Energies. 11:3476-3487. https://doi.org/10.3390/en11123476
SAS. 1998. User’s Guide: Statistics, Version6. 12nd Ed. SAS Inst. Inc., Cary, NC.
Savari, M., M. Khorvash, H. Amanlou, G. R. Ghorbani, E. Ghasemi, & M. Mirzaei. 2018. Effects of rumen-degradable protein: rumen-undegradable protein ratio and corn processing on production performance, nitrogen efficiency, and feeding behavior of Holstein dairy cows. J. Dairy Sci. 101:1111-1122. https://doi.org/10.3168/jds.2017-12776
Shen, J. S., L. J. Song, H. Z. Sun, B. Wang, Z. Chai, B. Chacher, & J. X. Liu. 2015. Effects of corn and soybean meal types on rumen fermentation, nitrogen metabolism and productivity in dairy cows. J. Anim. Sci. 28:351-359. https://doi.org/10.5713/ajas.14.0504
Shi, A. M., D. Li, L. J. Wang, B. Z. Li, & B. Adhikari. 2011. Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability. Carbohydr. Polym. 83:1604-1610. https://doi.org/10.1016/j.carbpol.2010.10.011
Silva, C. A., N. D. Sousa, S. M. E. Silva, P. T. Fontes, & S. R. Tomaz. 2016. Optimal consumes of NaOH in starches gelatinization for froth flotation. Int. J. Environ. Eng. 10:994-999. https://doi.org/10.5281/zenodo.1127204
Singh, N., A. Kaur, & K. Shevkani. 2013. Maize: Grain structure, composition, milling, and starch characteristics. In: Chaudhary D., Kumar S., Langyan S. (Eds.) Maize: Nutrition Dynamics and Novel Uses. Springer, New Delhi. 2013:65-76. https://doi.org/10.1007/978-81-322-1623-0_5
Sommart, K., M. Wanapat, P. Rowlinson, D. S. Parker, P. Climee, & S. Panishying. 2000. The use of cassava chips as an energy source for lactating dairy cows fed with rice straw. Asian-Australas. J. Anim. Sci. 13:1094-1101. https://doi.org/10.5713/ajas.2000.1094
Srakaew, W., C. Wachirapakorn, & C. Wongnen. 2021. Dietary modified cassava chips and corn seed: Effect on growth performance, rumen production, and blood glucose and insulin in early fattening beef bulls. Walailak J. Sci. Technol. 18: Article 9217. https://doi.org/10.48048/wjst.2021.9217
Steel, R. G. & J. H. Torrie. 1980. Analysis of covariance. Principles and procedures of statistics: A Biometrical Approach. McGraw-Hill Book Company, Inc., New York. p. 401-437.
Suksombat, W., P. Lounglawan, & P. Noosen. 2007. Energy and protein evaluation of five feedstuffs used in diet in which cassava pulp as main energy source for lactating dairy cows. Suranaree J. Sci. Technol. 14:99-107.
Ungerfeld, E. M. 2020. Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Front. Microbiol. 11:589. https://doi.org/10.3389/fmicb.2020.00589
Van Soest, P. J., J. B. Robertson, & B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fibre and non-starch polysaccharide in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Wang, S., & L. Copeland. 2012. Effect of alkali treatment on structure and function of pea starch granules. Food Chem. 135:1635-1642. https://doi.org/10.1016/j.foodchem.2012.06.003
Zhang, P., R. L. Whistler, R. L. BeMiller, & R. L. Hamaker. 2005. Banana starch: production, physicochemical properties, and digestibility - a review. Carbohydr. Polym. 59:443-458. https://doi.org/10.1016/j.carbpol.2004.10.014
Zhong, R. Z., J.G. Li, Y. X. Gao, Z. L. Tan, & G. P. Ren. 2008. Effects of substitution of different levels of steam-flaked corn for finely ground corn on lactation and digestion in early lactation dairy cows. J. Dairy Sci. 91:3931-3937. https://doi.org/10.3168/jds.2007-0957

Authors

W. Srakaew
C. Wachirapakorn
chal_wch@kku.ac.th (Primary Contact)
A. Cherdthong
C. Wongnen
SrakaewW., WachirapakornC., CherdthongA., & WongnenC. (2021). Ruminal Degradability and Bypass Nutrients of Alkaline or Steam-Treated Cassava Chip and Corn Grain. Tropical Animal Science Journal, 44(4), 451-461. https://doi.org/10.5398/tasj.2021.44.4.451

Article Details